-
Notifications
You must be signed in to change notification settings - Fork 50
/
vecint.c
233 lines (219 loc) · 9.02 KB
/
vecint.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include "emulate.h"
#define VECINT_ROUNDING_SHIFT (1ull << 29)
#define VECINT_SATURATE (1ull << 30)
#define VECINT_SIGNED_OUTPUT (1ull << 26)
#define VECINT_SIGNED_Z (1ull << 63)
#define VECINT_INDEXED_LOAD (1ull << 53)
#define VECINT_INDEXED_LOAD_Y (1ull << 47)
#define VECINT_INDEXED_LOAD_4BIT (1ull << 48)
#define VECINT_SIGNED_X (1ull << 63)
#define VECINT_SIGNED_Y (1ull << 26)
int64_t vecint_alu_mode4(int64_t val, uint32_t satbits, uint64_t operand) {
uint32_t shift = (operand >> 58) & 0x1f;
if (shift && (operand & VECINT_ROUNDING_SHIFT)) {
val += 1ull << (shift - 1);
}
val >>= shift;
if (operand & VECINT_SATURATE) {
if (operand & VECINT_SIGNED_OUTPUT) {
satbits -= 1;
}
int64_t hi = 1ull << satbits;
if (operand & VECINT_SIGNED_Z) {
int64_t lo = (operand & VECINT_SIGNED_OUTPUT) ? -hi : 0;
if (val < lo) val = lo;
if (val >= hi) val = hi - 1;
} else {
if ((uint64_t)val >= (uint64_t)hi) val = hi - 1;
}
}
return val;
}
int64_t vecint_alu(int64_t x, int64_t y, int64_t z, int alumode, uint32_t shift) {
int64_t val = x * y;
if (alumode == 5 || alumode == 6) {
val += 1ull << (shift - 1);
} else if (alumode == 2 || alumode == 3) {
val = x + y;
} else if (alumode == 9) {
return z + __builtin_popcountll((~(x ^ y)) << shift);
} else if (alumode == 11) {
val = x;
} else if (alumode == 12) {
val = y;
}
val >>= shift;
if (alumode == 1 || alumode == 3 || alumode == 6) {
val = -val;
}
if (alumode != 10) {
val += z;
}
if (alumode == 5 || alumode == 6) {
if (val > 32767) val = 32767;
if (val < -32768) val = -32768;
}
return val;
}
void emulate_AMX_VECINT(amx_state* state, uint64_t operand) {
if ((operand >> 54) & 7) {
return;
}
uint64_t z_row = operand >> 20;
uint32_t z_step = 64;
uint64_t x_step = 64;
uint64_t y_step = 64;
int32_t ximask = -1;
if ((AMX_VER >= AMX_VER_M2) && (operand & (1ull << 31))) {
uint64_t bmode = (operand >> 32) & 0x7;
operand &=~ (0x1ffull << 32);
switch (bmode) {
case 1: operand |= 3ull << 32; break; // override ALU operation to 0
case 2: x_step = 0; break; // same x vector for all operations
case 3: y_step = 0; break; // same y vector for all operations
case 4: operand |= 4ull << 32; break; // override x operand to zero
case 5: operand |= 5ull << 32; break; // override y operand to zero
case 6: x_step = 0; ximask = 0; break; // use lane 0 of x vector 0 for all operations
case 7: y_step = 0; operand |= 1ull << 38; break; // use lane 0 of y vector 0 for all operations
}
z_step = z_row & 32 ? 16 : 32;
}
z_row &= z_step - 1;
int32_t omask = (((operand >> 32) & 0x1ff) == 3) ? 0 : -1;
bool broadcast_y = ((operand >> (32+6)) & 7) == 1;
int alumode = (operand & VECINT_INDEXED_LOAD) ? 0 : (operand >> 47) & 0x3f;
uint32_t shift = (operand >> 58) & 0x1f;
uint32_t xbits = 0, ybits = 0, zbits, satbits;
if (alumode == 4) {
switch ((operand >> 42) & 0xf) {
case 3: zbits = 32; satbits = 16; break;
case 4: zbits = 32; satbits = 32; break;
case 9: zbits = 8; satbits = 8; break;
case 10: zbits = 32; satbits = 8; break;
case 11: zbits = 16; satbits = 8; break;
default: zbits = 16; satbits = 16; break;
}
} else if (alumode == 5 || alumode == 6) {
xbits = 16; ybits = 16; zbits = 16;
shift = 15;
} else {
switch ((operand >> 42) & 0xf) {
case 3: xbits = 16; ybits = 16; zbits = 32; break;
case 10: xbits = 8; ybits = 8; zbits = 32; break;
case 11: xbits = 8; ybits = 8; zbits = 16; break;
case 12: xbits = 8; ybits = 16; zbits = 32; break;
case 13: xbits = 16; ybits = 8; zbits = 32; break;
default: xbits = 16; ybits = 16; zbits = 16; break;
}
}
uint32_t xbytes = xbits / 8;
uint32_t ybytes = ybits / 8;
uint32_t zbytes = zbits / 8;
if (alumode == 4) {
// z = f(z), where f is [rounding] shift followed by [saturate]
// with various options for width and signedness
uint32_t zsignext = (operand & VECINT_SIGNED_Z) ? (64 - zbits) : 0;
uint64_t col_enable = parse_writemask(operand >> 32, zbytes, 9);
if (broadcast_y) {
col_enable = ~(uint64_t)0;
// NB: There is no y input to the operation
}
for (; z_row <= 63; z_row += z_step) {
for (uint32_t i = 0; i < 64; i += zbytes) {
if (!((col_enable >> i) & 1)) continue;
int64_t val = load_int(&state->z[z_row].u8[i], zbytes, zsignext);
val = vecint_alu_mode4(val, satbits, operand);
store_int(&state->z[z_row].u8[i], zbytes, val & omask);
}
}
return;
} else if ((AMX_VER >= AMX_VER_M2) && (alumode == 10 || alumode == 11 || alumode == 12)) {
} else if (alumode >= 7) {
return;
}
uint64_t x_offset = operand >> 10;
uint64_t y_offset = operand;
uint32_t ibits = (operand & VECINT_INDEXED_LOAD_4BIT) ? 4 : 2;
if (operand & VECINT_INDEXED_LOAD) {
if (operand & VECINT_INDEXED_LOAD_Y) {
y_step = y_step * ibits / ybits;
} else {
x_step = x_step * ibits / xbits;
}
}
if (AMX_VER >= AMX_VER_M4 && z_step < 64) {
if ((operand & VECINT_INDEXED_LOAD) && !(operand & VECINT_INDEXED_LOAD_Y)) {
// x_offset must be aligned such that the entire block of index
// data does not cross a 64-byte register boundary
x_offset &= -64u | -(512u * ibits / (xbytes * z_step));
} else if (ximask == 0) {
// x_offset must be aligned to a single element
x_offset &= -xbytes;
} else {
// x_offset must be aligned to an entire 64-byte register
x_offset &= -64u;
}
if ((operand & VECINT_INDEXED_LOAD) && (operand & VECINT_INDEXED_LOAD_Y)) {
// y_offset must be aligned such that the entire block of index
// data does not cross a 64-byte register boundary
y_offset &= -64u | -(512u * ibits / (ybytes * z_step));
} else if (broadcast_y) {
// y_offset must be aligned to a single element
y_offset &= -ybytes;
} else {
// y_offset must be aligned to an entire 64-byte register
y_offset &= -64u;
}
}
for (; z_row <= 63; z_row += z_step) {
uint8_t x[64];
uint8_t y[64];
load_xy_reg(x, state->x, x_offset & 0x1FF); x_offset += x_step;
load_xy_reg(y, state->y, y_offset & 0x1FF); y_offset += y_step;
if (operand & VECINT_INDEXED_LOAD) {
uint32_t src_reg = (operand >> 49) & 7;
if (operand & VECINT_INDEXED_LOAD_Y) {
load_xy_reg_indexed(y, state->y[src_reg].u8, ibits, ybits);
} else {
load_xy_reg_indexed(x, state->x[src_reg].u8, ibits, xbits);
}
}
xy_shuffle(x, (operand >> 29) & 3, xbytes);
xy_shuffle(y, (operand >> 27) & 3, ybytes);
// z = z +/- (f(x, y) >> s) for f being * or +
// z = sat_i16(z +/- (f(x, y) >> 16)) for f being SQRDMLAH / SQRDMLSH
// with various width/sign/shuffle arrangements for x and y
// and various width arrangements for z (interleaving of z dependent on widths of x/y/z)
// write-mask, or broadcast from y, or x=0, or y=0
uint64_t x_enable = parse_writemask(operand >> 32, xbytes, 9);
uint64_t y_enable = parse_writemask(operand >> 32, ybytes, 9);
if (broadcast_y) {
x_enable = ~(uint64_t)0;
y_enable = ~(uint64_t)0;
} else if (((operand >> (32+6)) & 7) == 0) {
uint32_t val = (operand >> 32) & 0x3F;
if (val == 4) {
memset(x, 0, 64);
} else if (val == 5) {
memset(y, 0, 64);
}
}
uint32_t xsignext = (operand & VECINT_SIGNED_X) ? (64 - xbits) : 0;
uint32_t ysignext = (operand & VECINT_SIGNED_Y) ? (64 - ybits) : 0;
uint32_t zsignext = 64 - zbits;
uint32_t step = min(xbytes, ybytes);
uint32_t zmask = (zbytes / step) - 1;
for (uint32_t i = 0; i < 64; i += step) {
uint32_t xi = i & -xbytes & ximask;
if (!((x_enable >> xi) & 1)) continue;
uint32_t yj = broadcast_y ? ((operand >> 32) * ybytes) & 0x3f : i & -ybytes;
if (!((y_enable >> yj) & 1)) continue;
int64_t xv = load_int(x + xi, xbytes, xsignext);
int64_t yv = load_int(y + yj, ybytes, ysignext);
void* z = &state->z[bit_select(z_row, i / step, zmask)].u8[i & -zbytes];
int64_t zv = load_int(z, zbytes, zsignext);
int64_t result = vecint_alu(xv, yv, zv, alumode, shift) & omask;
store_int(z, zbytes, result);
}
}
}