-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.ino
210 lines (172 loc) · 4.61 KB
/
main.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <Arduino.h>
#include <String.h>
#include <Wire.h>
#include <SPI.h>
#include "main.h"
#include "MS5611.h"
#include "RP2040_PWM.h"
using namespace std;
//creates pwm instance
RP2040_PWM* PWM_Instance;
SYSTEMS current_state = {
{0, 0, 0, 0,
false}, // GPS
{0, 0, 0, 0, 0,
false}, // ALTIMETER
{0, 0, 0,
false}, // ACCEL
{0, 0, 0,
0, 0, 0,
false}, // GYRO
{0, 0, 0,
false}, // MAG
{0, 1000,
false}, // SD
};
// MS5611 Altimeter
MS5611 ms5611;
#define SEA_LEVEL_PRESURE 102106.3 // Calculated using Duffield hall senior meche lounge as reference, 246.48 m in elevation
#define SEPARATION 19
#define LED 25
bool apogee = false; // flag used to mark apogee detection
bool armed = false; // flag used to mark arrival at arming altitude
double alt_sum = 0.0;
int next_alt = 0;
double filtered_alt1 = 0.0; // The altitude two before the current reading
double filtered_alt2 = 0.0; // The previous filtered altitude
double filtered_alt3 = 0.0; // the most recent relative alt run through a boxcar filter
bool deployed = false;
bool sep_armed = false;
int arm_time = 0;
unsigned long separation_start;
void init_sensors()
{
// Wire.setSDA(21);
// Wire.setSCL(20);
Serial.println("first");
Wire.begin();
Serial.println("second");
// MS5611 Altimeter
if (ms5611.begin())
{
Serial.println("it began");
// This check actually freezes the processor if it fails,
// Need to fix the library to fail gracefully
current_state.ALTIMETER.INIT = true;
current_state.ALTIMETER.REF_PRESURE = ms5611.readPressure();
}
if (!current_state.ALTIMETER.INIT)
Serial.print("ALTIMETER UNABLE TO INITIALIZE\n");
// Log.critical("ALTIMETER UNABLE TO INITIALIZE\n");
Serial.println("End");
}
void poll_sensors()
{
// MS5611 Altimeter
if (current_state.ALTIMETER.INIT)
{
long realPressure = ms5611.readPressure();
current_state.ALTIMETER.TEMP = ms5611.readTemperature();
current_state.ALTIMETER.PRESSURE = ms5611.readPressure();
current_state.ALTIMETER.ABS_ALTITUDE = ms5611.getAltitude(realPressure, SEA_LEVEL_PRESURE);
current_state.ALTIMETER.REL_ALTITUDE = ms5611.getAltitude(realPressure, current_state.ALTIMETER.REF_PRESURE);
alt_sum += current_state.ALTIMETER.REL_ALTITUDE;
next_alt += 1;
}
}
bool apogee_detect()
{
double diff1 = filtered_alt1 - filtered_alt2;
double diff2 = filtered_alt2 - filtered_alt3;
bool mag1 = (diff1 > -1.0 && diff1 < 0.0) || (diff1 < 1.0 && diff1 > 0.0);
bool mag2 = (diff2 > -1.0 && diff2 < 0.0) || (diff2 < 1.0 && diff2 > 0.0);
if (filtered_alt1 > filtered_alt2 && filtered_alt2 > filtered_alt3)
{
//Log.debug("Apogee reached");
return true;
}
return false;
}
void run_filter()
{
if (next_alt % 10 == 0)
{
filtered_alt1 = filtered_alt2;
filtered_alt2 = filtered_alt3;
filtered_alt3 = alt_sum / 10.0;
alt_sum = 0;
}
}
// arm at 1524m and trigger below 914.4m
const float arm_alt = 0.5;
const float trigger_alt = 0.5;
bool seperation_logic(bool a)
{
Serial.println(current_state.ALTIMETER.REL_ALTITUDE);
if (!a && current_state.ALTIMETER.REL_ALTITUDE > arm_alt) // above 5000 feet (1524 m)
{
Serial.println("Armed");
a = true;
//Log.debug("Arming altitude reached (5000 ft)");
}
if (a && !deployed && current_state.ALTIMETER.REL_ALTITUDE < trigger_alt && sep_armed && millis() - arm_time > 150) // below 3000 feet
{
Serial.println("PWM Signal");
PWM_Instance->setPWM(SEPARATION, 10000, 50);
// analogWrite(SEPARATION, 123);
separation_start = millis();
deployed = true;
}
if (a && !deployed && current_state.ALTIMETER.REL_ALTITUDE < trigger_alt && !sep_armed) // below 3000 feet
{
Serial.println("High Signal");
sep_armed = true;
arm_time = millis();
digitalWrite(SEPARATION, HIGH);
}
if (deployed && millis() - separation_start > 12000)
{
Serial.println("Done");
//Log.debug("End wire heating");
digitalWrite(SEPARATION, LOW);
}
return a;
}
void setup()
{
delay(5000);
Serial.begin(115200);
Serial.println("In setup");
PWM_Instance = new RP2040_PWM(SEPARATION, 10000, 0);
Serial.println("1");
// analogWriteFreq(10000);
// init_sd();
// init_rf();
pinMode(SEPARATION, OUTPUT);
Serial.println("2");
pinMode(LED, OUTPUT); // LED
Serial.println("3");
init_sensors();
Serial.println("4");
digitalWrite(LED, HIGH);
Serial.println("5");
delay(2000);
Serial.println("6");
digitalWrite(LED,LOW);
Serial.println("7");
}
void loop()
{
Serial.print("We're here\n");
digitalWrite(LED, HIGH);
delay(500);
digitalWrite(LED,LOW);
delay(500);
poll_sensors();
run_filter();
if (armed && !apogee && next_alt % 10 == 0)
{
apogee = apogee_detect();
}
armed = seperation_logic(armed);
}