-
Notifications
You must be signed in to change notification settings - Fork 0
/
genesis.c
1734 lines (1623 loc) · 57.8 KB
/
genesis.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2013-2016 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "genesis.h"
#include "blastem.h"
#include "nor.h"
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <string.h>
#include "render.h"
#include "gst.h"
#include "util.h"
#include "debug.h"
#include "gdb_remote.h"
#include "saves.h"
#include "bindings.h"
#include "jcart.h"
#include "config.h"
#include "event_log.h"
#define MCLKS_NTSC 53693175
#define MCLKS_PAL 53203395
uint32_t MCLKS_PER_68K;
#define MCLKS_PER_YM 7
#define MCLKS_PER_Z80 15
#define MCLKS_PER_PSG (MCLKS_PER_Z80*16)
#define Z80_INT_PULSE_MCLKS 2573 //measured value is ~171.5 Z80 clocks
#define DEFAULT_SYNC_INTERVAL MCLKS_LINE
#define DEFAULT_LOWPASS_CUTOFF 3390
//TODO: Figure out the exact value for this
#define LINES_NTSC 262
#define LINES_PAL 313
#ifdef IS_LIB
#define MAX_SOUND_CYCLES (MCLKS_PER_YM*NUM_OPERATORS*6*4)
#else
#define MAX_SOUND_CYCLES 100000
#endif
#ifdef NEW_CORE
#define Z80_CYCLE cycles
#define Z80_OPTS opts
#define z80_handle_code_write(...)
#else
#define Z80_CYCLE current_cycle
#define Z80_OPTS options
#endif
void genesis_serialize(genesis_context *gen, serialize_buffer *buf, uint32_t m68k_pc, uint8_t all)
{
if (all) {
start_section(buf, SECTION_68000);
m68k_serialize(gen->m68k, m68k_pc, buf);
end_section(buf);
start_section(buf, SECTION_Z80);
z80_serialize(gen->z80, buf);
end_section(buf);
}
start_section(buf, SECTION_VDP);
vdp_serialize(gen->vdp, buf);
end_section(buf);
start_section(buf, SECTION_YM2612);
ym_serialize(gen->ym, buf);
end_section(buf);
start_section(buf, SECTION_PSG);
psg_serialize(gen->psg, buf);
end_section(buf);
if (all) {
start_section(buf, SECTION_GEN_BUS_ARBITER);
save_int8(buf, gen->z80->reset);
save_int8(buf, gen->z80->busreq);
save_int16(buf, gen->z80_bank_reg);
end_section(buf);
start_section(buf, SECTION_SEGA_IO_1);
io_serialize(gen->io.ports, buf);
end_section(buf);
start_section(buf, SECTION_SEGA_IO_2);
io_serialize(gen->io.ports + 1, buf);
end_section(buf);
start_section(buf, SECTION_SEGA_IO_EXT);
io_serialize(gen->io.ports + 2, buf);
end_section(buf);
start_section(buf, SECTION_MAIN_RAM);
save_int8(buf, RAM_WORDS * 2 / 1024);
save_buffer16(buf, gen->work_ram, RAM_WORDS);
end_section(buf);
start_section(buf, SECTION_SOUND_RAM);
save_int8(buf, Z80_RAM_BYTES / 1024);
save_buffer8(buf, gen->zram, Z80_RAM_BYTES);
end_section(buf);
cart_serialize(&gen->header, buf);
}
}
static uint8_t *serialize(system_header *sys, size_t *size_out)
{
genesis_context *gen = (genesis_context *)sys;
uint32_t address;
if (gen->m68k->resume_pc) {
gen->m68k->target_cycle = gen->m68k->current_cycle;
gen->header.save_state = SERIALIZE_SLOT+1;
resume_68k(gen->m68k);
if (size_out) {
*size_out = gen->serialize_size;
}
return gen->serialize_tmp;
} else {
serialize_buffer state;
init_serialize(&state);
uint32_t address = read_word(4, (void **)gen->m68k->mem_pointers, &gen->m68k->options->gen, gen->m68k) << 16;
address |= read_word(6, (void **)gen->m68k->mem_pointers, &gen->m68k->options->gen, gen->m68k);
genesis_serialize(gen, &state, address, 1);
if (size_out) {
*size_out = state.size;
}
return state.data;
}
}
static void ram_deserialize(deserialize_buffer *buf, void *vgen)
{
genesis_context *gen = vgen;
uint32_t ram_size = load_int8(buf) * 1024 / 2;
if (ram_size > RAM_WORDS) {
fatal_error("State has a RAM size of %d bytes", ram_size * 2);
}
load_buffer16(buf, gen->work_ram, ram_size);
m68k_invalidate_code_range(gen->m68k, 0xE00000, 0x1000000);
}
static void zram_deserialize(deserialize_buffer *buf, void *vgen)
{
genesis_context *gen = vgen;
uint32_t ram_size = load_int8(buf) * 1024;
if (ram_size > Z80_RAM_BYTES) {
fatal_error("State has a Z80 RAM size of %d bytes", ram_size);
}
load_buffer8(buf, gen->zram, ram_size);
z80_invalidate_code_range(gen->z80, 0, 0x4000);
}
static void update_z80_bank_pointer(genesis_context *gen)
{
if (gen->z80_bank_reg < 0x140) {
gen->z80->mem_pointers[1] = get_native_pointer(gen->z80_bank_reg << 15, (void **)gen->m68k->mem_pointers, &gen->m68k->options->gen);
} else {
gen->z80->mem_pointers[1] = NULL;
}
z80_invalidate_code_range(gen->z80, 0x8000, 0xFFFF);
}
static void bus_arbiter_deserialize(deserialize_buffer *buf, void *vgen)
{
genesis_context *gen = vgen;
gen->z80->reset = load_int8(buf);
gen->z80->busreq = load_int8(buf);
gen->z80_bank_reg = load_int16(buf) & 0x1FF;
}
static void adjust_int_cycle(m68k_context * context, vdp_context * v_context);
void genesis_deserialize(deserialize_buffer *buf, genesis_context *gen)
{
register_section_handler(buf, (section_handler){.fun = m68k_deserialize, .data = gen->m68k}, SECTION_68000);
register_section_handler(buf, (section_handler){.fun = z80_deserialize, .data = gen->z80}, SECTION_Z80);
register_section_handler(buf, (section_handler){.fun = vdp_deserialize, .data = gen->vdp}, SECTION_VDP);
register_section_handler(buf, (section_handler){.fun = ym_deserialize, .data = gen->ym}, SECTION_YM2612);
register_section_handler(buf, (section_handler){.fun = psg_deserialize, .data = gen->psg}, SECTION_PSG);
register_section_handler(buf, (section_handler){.fun = bus_arbiter_deserialize, .data = gen}, SECTION_GEN_BUS_ARBITER);
register_section_handler(buf, (section_handler){.fun = io_deserialize, .data = gen->io.ports}, SECTION_SEGA_IO_1);
register_section_handler(buf, (section_handler){.fun = io_deserialize, .data = gen->io.ports + 1}, SECTION_SEGA_IO_2);
register_section_handler(buf, (section_handler){.fun = io_deserialize, .data = gen->io.ports + 2}, SECTION_SEGA_IO_EXT);
register_section_handler(buf, (section_handler){.fun = ram_deserialize, .data = gen}, SECTION_MAIN_RAM);
register_section_handler(buf, (section_handler){.fun = zram_deserialize, .data = gen}, SECTION_SOUND_RAM);
register_section_handler(buf, (section_handler){.fun = cart_deserialize, .data = gen}, SECTION_MAPPER);
while (buf->cur_pos < buf->size)
{
load_section(buf);
}
update_z80_bank_pointer(gen);
adjust_int_cycle(gen->m68k, gen->vdp);
free(buf->handlers);
buf->handlers = NULL;
}
#include "m68k_internal.h" //needed for get_native_address_trans, should be eliminated once handling of PC is cleaned up
static void deserialize(system_header *sys, uint8_t *data, size_t size)
{
genesis_context *gen = (genesis_context *)sys;
deserialize_buffer buffer;
init_deserialize(&buffer, data, size);
genesis_deserialize(&buffer, gen);
//HACK: Fix this once PC/IR is represented in a better way in 68K core
gen->m68k->resume_pc = get_native_address_trans(gen->m68k, gen->m68k->last_prefetch_address);
}
uint16_t read_dma_value(uint32_t address)
{
genesis_context *genesis = (genesis_context *)current_system;
//TODO: Figure out what happens when you try to DMA from weird adresses like IO or banked Z80 area
if ((address >= 0xA00000 && address < 0xB00000) || (address >= 0xC00000 && address <= 0xE00000)) {
return 0;
}
//addresses here are word addresses (i.e. bit 0 corresponds to A1), so no need to do multiply by 2
return read_word(address * 2, (void **)genesis->m68k->mem_pointers, &genesis->m68k->options->gen, genesis->m68k);
}
static uint16_t get_open_bus_value(system_header *system)
{
genesis_context *genesis = (genesis_context *)system;
return read_dma_value(genesis->m68k->last_prefetch_address/2);
}
static void adjust_int_cycle(m68k_context * context, vdp_context * v_context)
{
//static int old_int_cycle = CYCLE_NEVER;
genesis_context *gen = context->system;
if (context->sync_cycle - context->current_cycle > gen->max_cycles) {
context->sync_cycle = context->current_cycle + gen->max_cycles;
}
context->int_cycle = CYCLE_NEVER;
if ((context->status & 0x7) < 6) {
uint32_t next_vint = vdp_next_vint(v_context);
if (next_vint != CYCLE_NEVER) {
context->int_cycle = next_vint;
context->int_num = 6;
}
if ((context->status & 0x7) < 4) {
uint32_t next_hint = vdp_next_hint(v_context);
if (next_hint != CYCLE_NEVER) {
next_hint = next_hint < context->current_cycle ? context->current_cycle : next_hint;
if (next_hint < context->int_cycle) {
context->int_cycle = next_hint;
context->int_num = 4;
}
}
}
}
if (context->int_cycle > context->current_cycle && context->int_pending == INT_PENDING_SR_CHANGE) {
context->int_pending = INT_PENDING_NONE;
}
/*if (context->int_cycle != old_int_cycle) {
printf("int cycle changed to: %d, level: %d @ %d(%d), frame: %d, vcounter: %d, hslot: %d, mask: %d, hint_counter: %d\n", context->int_cycle, context->int_num, v_context->cycles, context->current_cycle, v_context->frame, v_context->vcounter, v_context->hslot, context->status & 0x7, v_context->hint_counter);
old_int_cycle = context->int_cycle;
}*/
if (context->status & M68K_STATUS_TRACE || context->trace_pending) {
context->target_cycle = context->current_cycle;
return;
}
context->target_cycle = context->int_cycle < context->sync_cycle ? context->int_cycle : context->sync_cycle;
if (context->should_return || gen->header.enter_debugger) {
context->target_cycle = context->current_cycle;
} else if (context->target_cycle < context->current_cycle) {
//Changes to SR can result in an interrupt cycle that's in the past
//This can cause issues with the implementation of STOP though
context->target_cycle = context->current_cycle;
}
if (context->target_cycle == context->int_cycle) {
//Currently delays from Z80 access and refresh are applied only when we sync
//this can cause extra latency when it comes to interrupts
//to prevent this code forces some extra synchronization in the period immediately before an interrupt
if ((context->target_cycle - context->current_cycle) > gen->int_latency_prev1) {
context->target_cycle = context->sync_cycle = context->int_cycle - gen->int_latency_prev1;
} else if ((context->target_cycle - context->current_cycle) > gen->int_latency_prev2) {
context->target_cycle = context->sync_cycle = context->int_cycle - gen->int_latency_prev2;
} else {
context->target_cycle = context->sync_cycle = context->current_cycle;
}
}
/*printf("Cyc: %d, Trgt: %d, Int Cyc: %d, Int: %d, Mask: %X, V: %d, H: %d, HICount: %d, HReg: %d, Line: %d\n",
context->current_cycle, context->target_cycle, context->int_cycle, context->int_num, (context->status & 0x7),
v_context->regs[REG_MODE_2] & 0x20, v_context->regs[REG_MODE_1] & 0x10, v_context->hint_counter, v_context->regs[REG_HINT], v_context->cycles / MCLKS_LINE);*/
}
//#define DO_DEBUG_PRINT
#ifdef DO_DEBUG_PRINT
#define dprintf printf
#define dputs puts
#else
#define dprintf
#define dputs
#endif
static void z80_next_int_pulse(z80_context * z_context)
{
genesis_context * gen = z_context->system;
#ifdef NEW_CORE
z_context->int_cycle = vdp_next_vint_z80(gen->vdp);
z_context->int_end_cycle = z_context->int_cycle + Z80_INT_PULSE_MCLKS;
z_context->int_value = 0xFF;
z80_sync_cycle(z_context, z_context->sync_cycle);
#else
z_context->int_pulse_start = vdp_next_vint_z80(gen->vdp);
z_context->int_pulse_end = z_context->int_pulse_start + Z80_INT_PULSE_MCLKS;
z_context->im2_vector = 0xFF;
#endif
}
static void sync_z80(z80_context * z_context, uint32_t mclks)
{
#ifndef NO_Z80
if (z80_enabled) {
#ifdef NEW_CORE
if (z_context->int_cycle == 0xFFFFFFFFU) {
z80_next_int_pulse(z_context);
}
#endif
z80_run(z_context, mclks);
} else
#endif
{
z_context->Z80_CYCLE = mclks;
}
}
static void sync_sound(genesis_context * gen, uint32_t target)
{
//printf("YM | Cycle: %d, bpos: %d, PSG | Cycle: %d, bpos: %d\n", gen->ym->current_cycle, gen->ym->buffer_pos, gen->psg->cycles, gen->psg->buffer_pos * 2);
while (target > gen->psg->cycles && target - gen->psg->cycles > MAX_SOUND_CYCLES) {
uint32_t cur_target = gen->psg->cycles + MAX_SOUND_CYCLES;
//printf("Running PSG to cycle %d\n", cur_target);
psg_run(gen->psg, cur_target);
//printf("Running YM-2612 to cycle %d\n", cur_target);
ym_run(gen->ym, cur_target);
}
psg_run(gen->psg, target);
ym_run(gen->ym, target);
//printf("Target: %d, YM bufferpos: %d, PSG bufferpos: %d\n", target, gen->ym->buffer_pos, gen->psg->buffer_pos * 2);
}
//My refresh emulation isn't currently good enough and causes more problems than it solves
#define REFRESH_EMULATION
#ifdef REFRESH_EMULATION
#define REFRESH_INTERVAL 128
#define REFRESH_DELAY 2
uint32_t last_sync_cycle;
uint32_t refresh_counter;
#endif
#include <limits.h>
#define ADJUST_BUFFER (8*MCLKS_LINE*313)
#define MAX_NO_ADJUST (UINT_MAX-ADJUST_BUFFER)
m68k_context * sync_components(m68k_context * context, uint32_t address)
{
genesis_context * gen = context->system;
vdp_context * v_context = gen->vdp;
z80_context * z_context = gen->z80;
#ifdef REFRESH_EMULATION
//lame estimation of refresh cycle delay
refresh_counter += context->current_cycle - last_sync_cycle;
if (!gen->bus_busy) {
context->current_cycle += REFRESH_DELAY * MCLKS_PER_68K * (refresh_counter / (MCLKS_PER_68K * REFRESH_INTERVAL));
}
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
#endif
uint32_t mclks = context->current_cycle;
sync_z80(z_context, mclks);
sync_sound(gen, mclks);
vdp_run_context(v_context, mclks);
if (mclks >= gen->reset_cycle) {
gen->reset_requested = 1;
context->should_return = 1;
gen->reset_cycle = CYCLE_NEVER;
}
if (v_context->frame != gen->last_frame) {
//printf("reached frame end %d | MCLK Cycles: %d, Target: %d, VDP cycles: %d, vcounter: %d, hslot: %d\n", gen->last_frame, mclks, gen->frame_end, v_context->cycles, v_context->vcounter, v_context->hslot);
gen->last_frame = v_context->frame;
event_flush(mclks);
gen->last_flush_cycle = mclks;
if(exit_after){
--exit_after;
if (!exit_after) {
exit(0);
}
}
if (context->current_cycle > MAX_NO_ADJUST) {
uint32_t deduction = mclks - ADJUST_BUFFER;
vdp_adjust_cycles(v_context, deduction);
io_adjust_cycles(gen->io.ports, context->current_cycle, deduction);
io_adjust_cycles(gen->io.ports+1, context->current_cycle, deduction);
io_adjust_cycles(gen->io.ports+2, context->current_cycle, deduction);
if (gen->mapper_type == MAPPER_JCART) {
jcart_adjust_cycles(gen, deduction);
}
context->current_cycle -= deduction;
z80_adjust_cycles(z_context, deduction);
ym_adjust_cycles(gen->ym, deduction);
if (gen->ym->vgm) {
vgm_adjust_cycles(gen->ym->vgm, deduction);
}
gen->psg->cycles -= deduction;
if (gen->reset_cycle != CYCLE_NEVER) {
gen->reset_cycle -= deduction;
}
event_cycle_adjust(mclks, deduction);
gen->last_flush_cycle -= deduction;
}
} else if (mclks - gen->last_flush_cycle > gen->soft_flush_cycles) {
event_soft_flush(mclks);
gen->last_flush_cycle = mclks;
}
gen->frame_end = vdp_cycles_to_frame_end(v_context);
context->sync_cycle = gen->frame_end;
//printf("Set sync cycle to: %d @ %d, vcounter: %d, hslot: %d\n", context->sync_cycle, context->current_cycle, v_context->vcounter, v_context->hslot);
if (context->int_ack) {
//printf("acknowledging %d @ %d:%d, vcounter: %d, hslot: %d\n", context->int_ack, context->current_cycle, v_context->cycles, v_context->vcounter, v_context->hslot);
vdp_int_ack(v_context);
context->int_ack = 0;
}
if (!address && (gen->header.enter_debugger || gen->header.save_state)) {
context->sync_cycle = context->current_cycle + 1;
}
adjust_int_cycle(context, v_context);
if (gen->reset_cycle < context->target_cycle) {
context->target_cycle = gen->reset_cycle;
}
if (address) {
if (gen->header.enter_debugger) {
gen->header.enter_debugger = 0;
debugger(context, address);
}
#ifdef NEW_CORE
if (gen->header.save_state) {
#else
if (gen->header.save_state && (z_context->pc || !z_context->native_pc || z_context->reset || !z_context->busreq)) {
#endif
uint8_t slot = gen->header.save_state - 1;
gen->header.save_state = 0;
#ifndef NEW_CORE
if (z_context->native_pc && !z_context->reset) {
//advance Z80 core to the start of an instruction
while (!z_context->pc)
{
sync_z80(z_context, z_context->current_cycle + MCLKS_PER_Z80);
}
}
#endif
char *save_path = slot >= SERIALIZE_SLOT ? NULL : get_slot_name(&gen->header, slot, use_native_states ? "state" : "gst");
if (use_native_states || slot >= SERIALIZE_SLOT) {
serialize_buffer state;
init_serialize(&state);
genesis_serialize(gen, &state, address, slot != EVENTLOG_SLOT);
if (slot == SERIALIZE_SLOT) {
gen->serialize_tmp = state.data;
gen->serialize_size = state.size;
context->sync_cycle = context->current_cycle;
context->should_return = 1;
} else if (slot == EVENTLOG_SLOT) {
event_state(context->current_cycle, &state);
} else {
save_to_file(&state, save_path);
free(state.data);
}
} else {
save_gst(gen, save_path, address);
}
if (slot != SERIALIZE_SLOT) {
debug_message("Saved state to %s\n", save_path);
}
free(save_path);
} else if(gen->header.save_state) {
context->sync_cycle = context->current_cycle + 1;
}
}
#ifdef REFRESH_EMULATION
last_sync_cycle = context->current_cycle;
#endif
return context;
}
static m68k_context * vdp_port_write(uint32_t vdp_port, m68k_context * context, uint16_t value)
{
if (vdp_port & 0x2700E0) {
fatal_error("machine freeze due to write to address %X\n", 0xC00000 | vdp_port);
}
vdp_port &= 0x1F;
//printf("vdp_port write: %X, value: %X, cycle: %d\n", vdp_port, value, context->current_cycle);
#ifdef REFRESH_EMULATION
//do refresh check here so we can avoid adding a penalty for a refresh that happens during a VDP access
refresh_counter += context->current_cycle - 4*MCLKS_PER_68K - last_sync_cycle;
context->current_cycle += REFRESH_DELAY * MCLKS_PER_68K * (refresh_counter / (MCLKS_PER_68K * REFRESH_INTERVAL));
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
last_sync_cycle = context->current_cycle;
#endif
sync_components(context, 0);
genesis_context * gen = context->system;
vdp_context *v_context = gen->vdp;
uint32_t before_cycle = v_context->cycles;
if (vdp_port < 0x10) {
int blocked;
if (vdp_port < 4) {
while (vdp_data_port_write(v_context, value) < 0) {
while(v_context->flags & FLAG_DMA_RUN) {
vdp_run_dma_done(v_context, gen->frame_end);
if (v_context->cycles >= gen->frame_end) {
uint32_t cycle_diff = v_context->cycles - context->current_cycle;
uint32_t m68k_cycle_diff = (cycle_diff / MCLKS_PER_68K) * MCLKS_PER_68K;
if (m68k_cycle_diff < cycle_diff) {
m68k_cycle_diff += MCLKS_PER_68K;
}
context->current_cycle += m68k_cycle_diff;
gen->bus_busy = 1;
sync_components(context, 0);
gen->bus_busy = 0;
}
}
//context->current_cycle = v_context->cycles;
}
} else if(vdp_port < 8) {
vdp_run_context_full(v_context, context->current_cycle);
before_cycle = v_context->cycles;
blocked = vdp_control_port_write(v_context, value);
if (blocked) {
while (blocked) {
while(v_context->flags & FLAG_DMA_RUN) {
vdp_run_dma_done(v_context, gen->frame_end);
if (v_context->cycles >= gen->frame_end) {
uint32_t cycle_diff = v_context->cycles - context->current_cycle;
uint32_t m68k_cycle_diff = (cycle_diff / MCLKS_PER_68K) * MCLKS_PER_68K;
if (m68k_cycle_diff < cycle_diff) {
m68k_cycle_diff += MCLKS_PER_68K;
}
context->current_cycle += m68k_cycle_diff;
gen->bus_busy = 1;
sync_components(context, 0);
gen->bus_busy = 0;
}
}
if (blocked < 0) {
blocked = vdp_control_port_write(v_context, value);
} else {
blocked = 0;
}
}
} else {
context->sync_cycle = gen->frame_end = vdp_cycles_to_frame_end(v_context);
//printf("Set sync cycle to: %d @ %d, vcounter: %d, hslot: %d\n", context->sync_cycle, context->current_cycle, v_context->vcounter, v_context->hslot);
adjust_int_cycle(context, v_context);
}
} else {
fatal_error("Illegal write to HV Counter port %X\n", vdp_port);
}
if (v_context->cycles != before_cycle) {
//printf("68K paused for %d (%d) cycles at cycle %d (%d) for write\n", v_context->cycles - context->current_cycle, v_context->cycles - before_cycle, context->current_cycle, before_cycle);
uint32_t cycle_diff = v_context->cycles - context->current_cycle;
uint32_t m68k_cycle_diff = (cycle_diff / MCLKS_PER_68K) * MCLKS_PER_68K;
if (m68k_cycle_diff < cycle_diff) {
m68k_cycle_diff += MCLKS_PER_68K;
}
context->current_cycle += m68k_cycle_diff;
//Lock the Z80 out of the bus until the VDP access is complete
gen->bus_busy = 1;
sync_z80(gen->z80, v_context->cycles);
gen->bus_busy = 0;
}
} else if (vdp_port < 0x18) {
psg_write(gen->psg, value);
} else {
vdp_test_port_write(gen->vdp, value);
}
#ifdef REFRESH_EMULATION
last_sync_cycle -= 4 * MCLKS_PER_68K;
//refresh may have happened while we were waiting on the VDP,
//so advance refresh_counter but don't add any delays
if (vdp_port >= 4 && vdp_port < 8 && v_context->cycles != before_cycle) {
refresh_counter = 0;
} else {
refresh_counter += (context->current_cycle - last_sync_cycle);
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
}
last_sync_cycle = context->current_cycle;
#endif
return context;
}
static m68k_context * vdp_port_write_b(uint32_t vdp_port, m68k_context * context, uint8_t value)
{
return vdp_port_write(vdp_port, context, vdp_port < 0x10 ? value | value << 8 : ((vdp_port & 1) ? value : 0));
}
static void * z80_vdp_port_write(uint32_t vdp_port, void * vcontext, uint8_t value)
{
z80_context * context = vcontext;
genesis_context * gen = context->system;
vdp_port &= 0xFF;
if (vdp_port & 0xE0) {
fatal_error("machine freeze due to write to Z80 address %X\n", 0x7F00 | vdp_port);
}
if (vdp_port < 0x10) {
//These probably won't currently interact well with the 68K accessing the VDP
if (vdp_port < 4) {
vdp_run_context(gen->vdp, context->Z80_CYCLE);
vdp_data_port_write(gen->vdp, value << 8 | value);
} else if (vdp_port < 8) {
vdp_run_context_full(gen->vdp, context->Z80_CYCLE);
vdp_control_port_write(gen->vdp, value << 8 | value);
} else {
fatal_error("Illegal write to HV Counter port %X\n", vdp_port);
}
} else if (vdp_port < 0x18) {
sync_sound(gen, context->Z80_CYCLE);
psg_write(gen->psg, value);
} else {
vdp_test_port_write(gen->vdp, value);
}
return context;
}
static uint16_t vdp_port_read(uint32_t vdp_port, m68k_context * context)
{
if (vdp_port & 0x2700E0) {
fatal_error("machine freeze due to read from address %X\n", 0xC00000 | vdp_port);
}
vdp_port &= 0x1F;
uint16_t value;
#ifdef REFRESH_EMULATION
//do refresh check here so we can avoid adding a penalty for a refresh that happens during a VDP access
refresh_counter += context->current_cycle - 4*MCLKS_PER_68K - last_sync_cycle;
context->current_cycle += REFRESH_DELAY * MCLKS_PER_68K * (refresh_counter / (MCLKS_PER_68K * REFRESH_INTERVAL));
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
last_sync_cycle = context->current_cycle;
#endif
sync_components(context, 0);
genesis_context *gen = context->system;
vdp_context * v_context = gen->vdp;
uint32_t before_cycle = v_context->cycles;
if (vdp_port < 0x10) {
if (vdp_port < 4) {
value = vdp_data_port_read(v_context);
} else if(vdp_port < 8) {
value = vdp_control_port_read(v_context);
} else {
value = vdp_hv_counter_read(v_context);
//printf("HV Counter: %X at cycle %d\n", value, v_context->cycles);
}
} else if (vdp_port < 0x18){
fatal_error("Illegal read from PSG port %X\n", vdp_port);
} else {
value = get_open_bus_value(&gen->header);
}
if (v_context->cycles != before_cycle) {
//printf("68K paused for %d (%d) cycles at cycle %d (%d) for read\n", v_context->cycles - context->current_cycle, v_context->cycles - before_cycle, context->current_cycle, before_cycle);
context->current_cycle = v_context->cycles;
//Lock the Z80 out of the bus until the VDP access is complete
genesis_context *gen = context->system;
gen->bus_busy = 1;
sync_z80(gen->z80, v_context->cycles);
gen->bus_busy = 0;
}
#ifdef REFRESH_EMULATION
last_sync_cycle -= 4 * MCLKS_PER_68K;
//refresh may have happened while we were waiting on the VDP,
//so advance refresh_counter but don't add any delays
refresh_counter += (context->current_cycle - last_sync_cycle);
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
last_sync_cycle = context->current_cycle;
#endif
return value;
}
static uint8_t vdp_port_read_b(uint32_t vdp_port, m68k_context * context)
{
uint16_t value = vdp_port_read(vdp_port, context);
if (vdp_port & 1) {
return value;
} else {
return value >> 8;
}
}
static uint8_t z80_vdp_port_read(uint32_t vdp_port, void * vcontext)
{
z80_context * context = vcontext;
if (vdp_port & 0xE0) {
fatal_error("machine freeze due to read from Z80 address %X\n", 0x7F00 | vdp_port);
}
genesis_context * gen = context->system;
//VDP access goes over the 68K bus like a bank area access
//typical delay from bus arbitration
context->Z80_CYCLE += 3 * MCLKS_PER_Z80;
//TODO: add cycle for an access right after a previous one
//TODO: Below cycle time is an estimate based on the time between 68K !BG goes low and Z80 !MREQ goes high
// Needs a new logic analyzer capture to get the actual delay on the 68K side
gen->m68k->current_cycle += 8 * MCLKS_PER_68K;
vdp_port &= 0x1F;
uint16_t ret;
if (vdp_port < 0x10) {
//These probably won't currently interact well with the 68K accessing the VDP
vdp_run_context(gen->vdp, context->Z80_CYCLE);
if (vdp_port < 4) {
ret = vdp_data_port_read(gen->vdp);
} else if (vdp_port < 8) {
ret = vdp_control_port_read(gen->vdp);
} else {
ret = vdp_hv_counter_read(gen->vdp);
}
} else {
//TODO: Figure out the correct value today
ret = 0xFFFF;
}
return vdp_port & 1 ? ret : ret >> 8;
}
//TODO: Move this inside the system context
static uint32_t zram_counter = 0;
static m68k_context * io_write(uint32_t location, m68k_context * context, uint8_t value)
{
genesis_context * gen = context->system;
#ifdef REFRESH_EMULATION
//do refresh check here so we can avoid adding a penalty for a refresh that happens during an IO area access
refresh_counter += context->current_cycle - 4*MCLKS_PER_68K - last_sync_cycle;
context->current_cycle += REFRESH_DELAY * MCLKS_PER_68K * (refresh_counter / (MCLKS_PER_68K * REFRESH_INTERVAL));
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
last_sync_cycle = context->current_cycle - 4*MCLKS_PER_68K;
#endif
if (location < 0x10000) {
//Access to Z80 memory incurs a one 68K cycle wait state
context->current_cycle += MCLKS_PER_68K;
if (!z80_enabled || z80_get_busack(gen->z80, context->current_cycle)) {
location &= 0x7FFF;
if (location < 0x4000) {
gen->zram[location & 0x1FFF] = value;
#ifndef NO_Z80
z80_handle_code_write(location & 0x1FFF, gen->z80);
#endif
} else if (location < 0x6000) {
sync_sound(gen, context->current_cycle);
if (location & 1) {
ym_data_write(gen->ym, value);
} else if(location & 2) {
ym_address_write_part2(gen->ym, value);
} else {
ym_address_write_part1(gen->ym, value);
}
} else if (location == 0x6000) {
gen->z80_bank_reg = (gen->z80_bank_reg >> 1 | value << 8) & 0x1FF;
if (gen->z80_bank_reg < 0x80) {
gen->z80->mem_pointers[1] = (gen->z80_bank_reg << 15) + ((char *)gen->z80->mem_pointers[2]);
} else {
gen->z80->mem_pointers[1] = NULL;
}
} else {
fatal_error("68K write to unhandled Z80 address %X\n", location);
}
}
} else {
if (location < 0x10100) {
switch(location >> 1 & 0xFF)
{
case 0x1:
io_data_write(gen->io.ports, value, context->current_cycle);
break;
case 0x2:
io_data_write(gen->io.ports+1, value, context->current_cycle);
break;
case 0x3:
io_data_write(gen->io.ports+2, value, context->current_cycle);
break;
case 0x4:
io_control_write(gen->io.ports, value, context->current_cycle);
break;
case 0x5:
io_control_write(gen->io.ports+1, value, context->current_cycle);
break;
case 0x6:
io_control_write(gen->io.ports+2, value, context->current_cycle);
break;
case 0x7:
gen->io.ports[0].serial_out = value;
break;
case 0x8:
case 0xB:
case 0xE:
//serial input port is not writeable
break;
case 0x9:
gen->io.ports[0].serial_ctrl = value;
break;
case 0xA:
gen->io.ports[1].serial_out = value;
break;
case 0xC:
gen->io.ports[1].serial_ctrl = value;
break;
case 0xD:
gen->io.ports[2].serial_out = value;
break;
case 0xF:
gen->io.ports[2].serial_ctrl = value;
break;
}
} else {
uint32_t masked = location & 0xFFF00;
if (masked == 0x11100) {
if (value & 1) {
dputs("bus requesting Z80");
if (z80_enabled) {
z80_assert_busreq(gen->z80, context->current_cycle);
} else {
gen->z80->busack = 1;
}
} else {
if (gen->z80->busreq) {
dputs("releasing z80 bus");
#ifdef DO_DEBUG_PRINT
char fname[20];
sprintf(fname, "zram-%d", zram_counter++);
FILE * f = fopen(fname, "wb");
fwrite(z80_ram, 1, sizeof(z80_ram), f);
fclose(f);
#endif
}
if (z80_enabled) {
z80_clear_busreq(gen->z80, context->current_cycle);
} else {
gen->z80->busack = 0;
}
}
} else if (masked == 0x11200) {
sync_z80(gen->z80, context->current_cycle);
if (value & 1) {
if (z80_enabled) {
z80_clear_reset(gen->z80, context->current_cycle);
} else {
gen->z80->reset = 0;
}
} else {
if (z80_enabled) {
z80_assert_reset(gen->z80, context->current_cycle);
} else {
gen->z80->reset = 1;
}
ym_reset(gen->ym);
}
} else if (masked != 0x11300 && masked != 0x11000) {
fatal_error("Machine freeze due to unmapped write to address %X\n", location | 0xA00000);
}
}
}
#ifdef REFRESH_EMULATION
//no refresh delays during IO access
refresh_counter += context->current_cycle - last_sync_cycle;
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
#endif
return context;
}
static m68k_context * io_write_w(uint32_t location, m68k_context * context, uint16_t value)
{
if (location < 0x10000 || (location & 0x1FFF) >= 0x100) {
return io_write(location, context, value >> 8);
} else {
return io_write(location, context, value);
}
}
#define FOREIGN 0x80
#define HZ50 0x40
#define USA FOREIGN
#define JAP 0x00
#define EUR (HZ50|FOREIGN)
#define NO_DISK 0x20
static uint8_t io_read(uint32_t location, m68k_context * context)
{
uint8_t value;
genesis_context *gen = context->system;
#ifdef REFRESH_EMULATION
//do refresh check here so we can avoid adding a penalty for a refresh that happens during an IO area access
refresh_counter += context->current_cycle - 4*MCLKS_PER_68K - last_sync_cycle;
context->current_cycle += REFRESH_DELAY * MCLKS_PER_68K * (refresh_counter / (MCLKS_PER_68K * REFRESH_INTERVAL));
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);
last_sync_cycle = context->current_cycle - 4*MCLKS_PER_68K;
#endif
if (location < 0x10000) {
//Access to Z80 memory incurs a one 68K cycle wait state
context->current_cycle += MCLKS_PER_68K;
if (!z80_enabled || z80_get_busack(gen->z80, context->current_cycle)) {
location &= 0x7FFF;
if (location < 0x4000) {
value = gen->zram[location & 0x1FFF];
} else if (location < 0x6000) {
sync_sound(gen, context->current_cycle);
value = ym_read_status(gen->ym, context->current_cycle, location);
} else if (location < 0x7F00) {
value = 0xFF;
} else {
fatal_error("Machine freeze due to read of Z80 VDP memory window by 68K: %X\n", location | 0xA00000);
value = 0xFF;
}
} else {
uint16_t word = get_open_bus_value(&gen->header);
value = location & 1 ? word : word >> 8;
}
} else {
if (location < 0x10100) {
switch(location >> 1 & 0xFF)
{
case 0x0:
//version bits should be 0 for now since we're not emulating TMSS
value = gen->version_reg;
break;
case 0x1:
value = io_data_read(gen->io.ports, context->current_cycle);
break;
case 0x2:
value = io_data_read(gen->io.ports+1, context->current_cycle);
break;
case 0x3:
value = io_data_read(gen->io.ports+2, context->current_cycle);
break;
case 0x4:
value = gen->io.ports[0].control;
break;
case 0x5:
value = gen->io.ports[1].control;
break;
case 0x6:
value = gen->io.ports[2].control;
break;
case 0x7:
value = gen->io.ports[0].serial_out;
break;
case 0x8:
value = gen->io.ports[0].serial_in;
break;
case 0x9:
value = gen->io.ports[0].serial_ctrl;
break;
case 0xA:
value = gen->io.ports[1].serial_out;
break;
case 0xB:
value = gen->io.ports[1].serial_in;
break;
case 0xC:
value = gen->io.ports[1].serial_ctrl;
break;
case 0xD:
value = gen->io.ports[2].serial_out;
break;
case 0xE:
value = gen->io.ports[2].serial_in;
break;
case 0xF:
value = gen->io.ports[2].serial_ctrl;
break;
default:
value = get_open_bus_value(&gen->header) >> 8;
}
} else {
uint32_t masked = location & 0xFFF00;
if (masked == 0x11100) {
value = z80_enabled ? !z80_get_busack(gen->z80, context->current_cycle) : !gen->z80->busack;
value |= (get_open_bus_value(&gen->header) >> 8) & 0xFE;
dprintf("Byte read of BUSREQ returned %d @ %d (reset: %d)\n", value, context->current_cycle, gen->z80->reset);
} else if (masked == 0x11200) {
value = !gen->z80->reset;
} else if (masked == 0x11300 || masked == 0x11000) {
//A11300 is apparently completely unused
//A11000 is the memory control register which I am assuming is write only
value = get_open_bus_value(&gen->header) >> 8;
} else {
location |= 0xA00000;
fatal_error("Machine freeze due to read of unmapped IO location %X\n", location);
value = 0xFF;
}
}
}
#ifdef REFRESH_EMULATION
//no refresh delays during IO access
refresh_counter += context->current_cycle - last_sync_cycle;
refresh_counter = refresh_counter % (MCLKS_PER_68K * REFRESH_INTERVAL);