-
Notifications
You must be signed in to change notification settings - Fork 0
/
backend.c
283 lines (271 loc) · 7.26 KB
/
backend.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
Copyright 2013 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "backend.h"
#include <stdlib.h>
deferred_addr * defer_address(deferred_addr * old_head, uint32_t address, uint8_t *dest)
{
deferred_addr * new_head = malloc(sizeof(deferred_addr));
new_head->next = old_head;
new_head->address = address & 0xFFFFFF;
new_head->dest = dest;
return new_head;
}
void remove_deferred_until(deferred_addr **head_ptr, deferred_addr * remove_to)
{
for(deferred_addr *cur = *head_ptr; cur && cur != remove_to; cur = *head_ptr)
{
*head_ptr = cur->next;
free(cur);
}
}
void process_deferred(deferred_addr ** head_ptr, void * context, native_addr_func get_native)
{
deferred_addr * cur = *head_ptr;
deferred_addr **last_next = head_ptr;
while(cur)
{
code_ptr native = get_native(context, cur->address);//get_native_address(opts->native_code_map, cur->address);
if (native) {
int32_t disp = native - (cur->dest + 4);
code_ptr out = cur->dest;
*(out++) = disp;
disp >>= 8;
*(out++) = disp;
disp >>= 8;
*(out++) = disp;
disp >>= 8;
*out = disp;
*last_next = cur->next;
free(cur);
cur = *last_next;
} else {
last_next = &(cur->next);
cur = cur->next;
}
}
}
memmap_chunk const *find_map_chunk(uint32_t address, cpu_options *opts, uint16_t flags, uint32_t *size_sum)
{
if (size_sum) {
*size_sum = 0;
}
address &= opts->address_mask;
for (memmap_chunk const *cur = opts->memmap, *end = opts->memmap + opts->memmap_chunks; cur != end; cur++)
{
if (address >= cur->start && address < cur->end) {
return cur;
} else if (size_sum && (cur->flags & flags) == flags) {
*size_sum += chunk_size(opts, cur);
}
}
return NULL;
}
void * get_native_pointer(uint32_t address, void ** mem_pointers, cpu_options * opts)
{
memmap_chunk const * memmap = opts->memmap;
address &= opts->address_mask;
for (uint32_t chunk = 0; chunk < opts->memmap_chunks; chunk++)
{
if (address >= memmap[chunk].start && address < memmap[chunk].end) {
if (!(memmap[chunk].flags & (MMAP_READ|MMAP_READ_CODE))) {
return NULL;
}
uint8_t * base = memmap[chunk].flags & MMAP_PTR_IDX
? mem_pointers[memmap[chunk].ptr_index]
: memmap[chunk].buffer;
if (!base) {
if (memmap[chunk].flags & MMAP_AUX_BUFF) {
return ((uint8_t *)memmap[chunk].buffer) + (address & memmap[chunk].aux_mask);
}
return NULL;
}
return base + (address & memmap[chunk].mask);
}
}
return NULL;
}
void * get_native_write_pointer(uint32_t address, void ** mem_pointers, cpu_options * opts)
{
memmap_chunk const * memmap = opts->memmap;
address &= opts->address_mask;
for (uint32_t chunk = 0; chunk < opts->memmap_chunks; chunk++)
{
if (address >= memmap[chunk].start && address < memmap[chunk].end) {
if (!(memmap[chunk].flags & (MMAP_WRITE))) {
return NULL;
}
uint8_t * base = memmap[chunk].flags & MMAP_PTR_IDX
? mem_pointers[memmap[chunk].ptr_index]
: memmap[chunk].buffer;
if (!base) {
if (memmap[chunk].flags & MMAP_AUX_BUFF) {
return ((uint8_t *)memmap[chunk].buffer) + (address & memmap[chunk].aux_mask);
}
return NULL;
}
return base + (address & memmap[chunk].mask);
}
}
return NULL;
}
uint16_t read_word(uint32_t address, void **mem_pointers, cpu_options *opts, void *context)
{
memmap_chunk const *chunk = find_map_chunk(address, opts, 0, NULL);
if (!chunk) {
return 0xFFFF;
}
uint32_t offset = address & chunk->mask;
if (chunk->flags & MMAP_READ) {
uint8_t *base;
if (chunk->flags & MMAP_PTR_IDX) {
base = mem_pointers[chunk->ptr_index];
} else {
base = chunk->buffer;
}
if (base) {
uint16_t val;
if ((chunk->flags & MMAP_ONLY_ODD) || (chunk->flags & MMAP_ONLY_EVEN)) {
offset /= 2;
val = base[offset];
if (chunk->flags & MMAP_ONLY_ODD) {
val |= 0xFF00;
} else {
val = val << 8 | 0xFF;
}
} else {
val = *(uint16_t *)(base + offset);
}
return val;
}
}
if ((!(chunk->flags & MMAP_READ) || (chunk->flags & MMAP_FUNC_NULL)) && chunk->read_16) {
return chunk->read_16(offset, context);
}
return 0xFFFF;
}
void write_word(uint32_t address, uint16_t value, void **mem_pointers, cpu_options *opts, void *context)
{
memmap_chunk const *chunk = find_map_chunk(address, opts, 0, NULL);
if (!chunk) {
return;
}
uint32_t offset = address & chunk->mask;
if (chunk->flags & MMAP_WRITE) {
uint8_t *base;
if (chunk->flags & MMAP_PTR_IDX) {
base = mem_pointers[chunk->ptr_index];
} else {
base = chunk->buffer;
}
if (base) {
if ((chunk->flags & MMAP_ONLY_ODD) || (chunk->flags & MMAP_ONLY_EVEN)) {
offset /= 2;
if (chunk->flags & MMAP_ONLY_EVEN) {
value >>= 16;
}
base[offset] = value;
} else {
*(uint16_t *)(base + offset) = value;
}
return;
}
}
if ((!(chunk->flags & MMAP_WRITE) || (chunk->flags & MMAP_FUNC_NULL)) && chunk->write_16) {
chunk->write_16(offset, context, value);
}
}
uint8_t read_byte(uint32_t address, void **mem_pointers, cpu_options *opts, void *context)
{
memmap_chunk const *chunk = find_map_chunk(address, opts, 0, NULL);
if (!chunk) {
return 0xFF;
}
uint32_t offset = address & chunk->mask;
if (chunk->flags & MMAP_READ) {
uint8_t *base;
if (chunk->flags & MMAP_PTR_IDX) {
base = mem_pointers[chunk->ptr_index];
} else {
base = chunk->buffer;
}
if (base) {
if ((chunk->flags & MMAP_ONLY_ODD) || (chunk->flags & MMAP_ONLY_EVEN)) {
if (address & 1) {
if (chunk->flags & MMAP_ONLY_EVEN) {
return 0xFF;
}
} else if (chunk->flags & MMAP_ONLY_ODD) {
return 0xFF;
}
offset /= 2;
} else if(opts->byte_swap) {
offset ^= 1;
}
return base[offset];
}
}
if ((!(chunk->flags & MMAP_READ) || (chunk->flags & MMAP_FUNC_NULL)) && chunk->read_8) {
return chunk->read_8(offset, context);
}
return 0xFF;
}
void write_byte(uint32_t address, uint8_t value, void **mem_pointers, cpu_options *opts, void *context)
{
memmap_chunk const *chunk = find_map_chunk(address, opts, 0, NULL);
if (!chunk) {
return;
}
uint32_t offset = address & chunk->mask;
if (chunk->flags & MMAP_WRITE) {
uint8_t *base;
if (chunk->flags & MMAP_PTR_IDX) {
base = mem_pointers[chunk->ptr_index];
} else {
base = chunk->buffer;
}
if (base) {
if ((chunk->flags & MMAP_ONLY_ODD) || (chunk->flags & MMAP_ONLY_EVEN)) {
if (address & 1) {
if (chunk->flags & MMAP_ONLY_EVEN) {
return;
}
} else if (chunk->flags & MMAP_ONLY_ODD) {
return;
}
offset /= 2;
} else if(opts->byte_swap) {
offset ^= 1;
}
base[offset] = value;
}
}
if ((!(chunk->flags & MMAP_WRITE) || (chunk->flags & MMAP_FUNC_NULL)) && chunk->write_8) {
chunk->write_8(offset, context, value);
}
}
uint32_t chunk_size(cpu_options *opts, memmap_chunk const *chunk)
{
if (chunk->mask == opts->address_mask) {
return chunk->end - chunk->start;
} else {
return chunk->mask + 1;
}
}
uint32_t ram_size(cpu_options *opts)
{
uint32_t size = 0;
for (int i = 0; i < opts->memmap_chunks; i++)
{
if (opts->memmap[i].flags & MMAP_CODE) {
if (opts->memmap[i].mask == opts->address_mask) {
size += opts->memmap[i].end - opts->memmap[i].start;
} else {
size += opts->memmap[i].mask + 1;
}
}
}
return size;
}