-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_per.py
128 lines (94 loc) · 3.74 KB
/
dqn_per.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import math
from datetime import datetime
import torch
from torch import nn, optim
import torch.nn.functional as F
import gym
from gym.spaces import Box, Discrete
from memory import PrioritizedReplayBuffer, Batch
from wrappers import TorchWrapper
def Actor(inp_dim: int, out_dim: int, hid_dim: int = 64):
return nn.Sequential(
nn.Linear(inp_dim, hid_dim),
nn.ReLU(),
nn.Linear(hid_dim, hid_dim),
nn.ReLU(),
nn.Linear(hid_dim, out_dim),
)
class DQN:
mini_batch_size: int = 128
replay_buffer_size: int = 50_000
learning_starts: int = 1000
actor_lr: float = 1e-3
discount: float = 0.99
alpha: float = 0.6
beta: float = 0.4
def __init__(self, state_space: Box, action_space: Discrete):
self.state_space = state_space
self.action_space = action_space
self.q = Actor(self.state_space.shape[0], self.action_space.n)
self.q_target = Actor(self.state_space.shape[0], self.action_space.n)
self.q_opt = optim.Adam(self.q.parameters(), lr=self.actor_lr)
self.q_target.load_state_dict(self.q.state_dict())
@torch.no_grad()
def act(self, state: torch.Tensor) -> int:
return self.q(state).argmax().item()
def update(self, buffer: PrioritizedReplayBuffer):
batch = buffer.sample(self.mini_batch_size)
with torch.no_grad():
max_q_prime = self.q_target(batch.next_state).max(-1)[0].unsqueeze(1)
target_q = batch.reward + self.discount * max_q_prime * batch.done
current_q = self.q(batch.state).gather(dim=1, index=batch.action)
mse = batch.weights * F.smooth_l1_loss(current_q, target_q, reduction="none")
loss = mse.mean()
self.q_opt.zero_grad()
loss.backward()
self.q_opt.step()
buffer.update_priorities(batch.indices, (mse + 1e-6).detach().squeeze(1))
def learn(self, env: gym.Env, eval_env: gym.Env, steps: int):
buffer = PrioritizedReplayBuffer(
self.state_space,
self.action_space,
self.replay_buffer_size,
self.alpha,
self.beta,
0, # (1 - self.beta) / (steps / 2),
0,
)
state, start = env.reset(), datetime.now()
for i_step in range(steps):
if i_step < self.learning_starts:
action = self.action_space.sample()
else:
action = self.act(state)
next_state, reward, done, info = env.step(action)
buffer.add(state, action, reward, done, next_state)
state = env.reset() if done else next_state
if i_step >= self.learning_starts:
self.update(buffer)
if i_step >= self.learning_starts and i_step % 100 == 0:
print(i_step, evaluate(eval_env, 42, self, 5), datetime.now() - start, buffer.beta)
if i_step % 100 == 0:
self.q_target.load_state_dict(self.q.state_dict())
def evaluate(env: gym.Env, seed: int, agent: DQN, num_episodes: int, render: bool = False) -> float:
score = 0
for i_episode in range(num_episodes):
env.seed(seed + i_episode)
state, done = env.reset(), False
while not done:
state, reward, done, info = env.step(agent.act(state))
score += reward
return score / num_episodes
def main(seed=0):
torch.manual_seed(seed)
env = TorchWrapper(gym.make("CartPole-v1"))
env.seed(seed)
env.action_space.seed(seed)
eval_env = TorchWrapper(gym.make("CartPole-v1"))
eval_env.seed(seed + 1)
agent = DQN(env.observation_space, env.action_space)
agent.learn(env, eval_env, 20_000)
print(evaluate(env, seed + 2, agent, 50, True))
env.close()
if __name__ == "__main__":
main()