-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2369589
commit 09f99a2
Showing
2 changed files
with
157 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
from functools import partial | ||
|
||
import jax.numpy as jnp | ||
import matplotlib.pyplot as plt | ||
|
||
from jax import random, jit, vmap | ||
from flax import struct | ||
from matplotlib import colormaps | ||
|
||
from simulationsandbox.environments.base_env import BaseEnv, BaseEnvState | ||
|
||
N_DIMS = 3 | ||
FISH_SPEED = 3. | ||
MOVE_SCALE = 1. | ||
FOOD_SPEED = 1. | ||
|
||
|
||
@struct.dataclass | ||
class Agents: | ||
pos: jnp.array | ||
velocity: jnp.array | ||
alive: jnp.array | ||
color: jnp.array | ||
obs: jnp.array | ||
|
||
|
||
@struct.dataclass | ||
class Objects: | ||
pos: jnp.array | ||
velocity: jnp.array | ||
|
||
|
||
@struct.dataclass | ||
class AquiariumState(BaseEnvState): | ||
time: int | ||
grid_size: int | ||
agents: Agents | ||
objects: Objects | ||
|
||
|
||
def normal(theta): | ||
return jnp.array([jnp.cos(theta), jnp.sin(theta)]) | ||
|
||
normal = jit(vmap(normal)) | ||
|
||
|
||
# Change the angle and speed of the agent a bit | ||
def move(obs, key): | ||
return random.normal(key, shape=(3,)) * MOVE_SCALE | ||
return random.uniform(key, shape=(N_DIMS,), minval=-1, maxval=1) * MOVE_SCALE | ||
|
||
move = jit(vmap(move, in_axes=(0, 0))) | ||
|
||
|
||
class Aquarium(BaseEnv): | ||
""" Minimalistic aquarium environmnent""" | ||
def __init__(self, max_agents=10, max_objects=20, grid_size=20): | ||
self.max_agents = max_agents | ||
self.max_objects = max_objects | ||
self.grid_size = grid_size | ||
|
||
def init_state(self, num_agents, num_obs, key): | ||
agents_key_pos, agents_key_vel, agents_color_key, objects_key_pos = random.split(key, 4) | ||
fish_velocity = random.uniform(agents_key_vel, shape=(self.max_agents, N_DIMS), minval=-1, maxval=1) | ||
fish_velocity = (fish_velocity / jnp.linalg.norm(fish_velocity)) * FISH_SPEED | ||
# fish_velocity = fish_velocity * FISH_SPEED | ||
|
||
fish = Agents( | ||
pos=random.uniform(key=agents_key_pos, shape=(self.max_agents, N_DIMS), minval=0, maxval=self.grid_size), | ||
velocity=fish_velocity, | ||
alive=jnp.hstack((jnp.ones(num_agents), jnp.zeros(self.max_agents - num_agents))), | ||
color=random.uniform(key=agents_color_key, shape=(self.max_agents, 3), minval=0., maxval=1.), | ||
obs=jnp.zeros((self.max_agents, num_obs)) | ||
) | ||
|
||
# Add food at the surface of the aquarium | ||
x_y_food_pos=random.uniform(key=objects_key_pos, shape=(self.max_objects, 2), minval=0, maxval=self.grid_size) | ||
z_food_pos = jnp.full((self.max_objects, 1), fill_value=self.grid_size) | ||
food_pos = jnp.concatenate((x_y_food_pos, z_food_pos), axis=1) | ||
|
||
food = Objects( | ||
pos=food_pos, | ||
velocity=jnp.tile(jnp.array([0., 0., -1]), (self.max_objects, 1)) * FOOD_SPEED, | ||
) | ||
|
||
aquarium_env = AquiariumState( | ||
time=0, | ||
grid_size=self.grid_size, | ||
agents=fish, | ||
objects=food | ||
) | ||
|
||
return aquarium_env | ||
|
||
@partial(jit, static_argnums=(0,)) | ||
def step(self, state, key): | ||
keys = random.split(key, self.max_agents) | ||
d_vel = move(state.agents.obs, keys) | ||
velocity = state.agents.velocity + d_vel | ||
velocity = (velocity / jnp.linalg.norm(velocity)) * FISH_SPEED | ||
agents_pos = state.agents.pos + velocity | ||
|
||
# Collide with walls | ||
agents_pos = jnp.clip(agents_pos, 0, self.grid_size - 1) | ||
|
||
# Update new state | ||
time = state.time + 1 | ||
agents = state.agents.replace(pos=agents_pos, velocity=velocity) | ||
state = state.replace(time=time, agents=agents) | ||
return state | ||
|
||
def add_agent(self, state, agent_idx): | ||
agents = state.agents.replace(alive=state.agents.alive.at[agent_idx].set(1.0)) | ||
state = state.replace(agents=agents) | ||
return state | ||
|
||
def remove_agent(self, state, agent_idx): | ||
agents = state.agents.replace(alive=state.agents.alive.at[agent_idx].set(0.0)) | ||
state = state.replace(agents=agents) | ||
return state | ||
|
||
@staticmethod | ||
def render(state): | ||
if not plt.fignum_exists(1): | ||
plt.ion() | ||
fig = plt.figure(figsize=(10, 10)) | ||
ax = fig.add_subplot(111, projection='3d') | ||
|
||
plt.clf() | ||
|
||
ax = plt.axes(projection='3d') | ||
|
||
alive_agents = jnp.where(state.agents.alive != 0.0) | ||
agents_x_pos = state.agents.pos[:, 0][alive_agents] | ||
agents_y_pos = state.agents.pos[:, 1][alive_agents] | ||
agents_z_pos = state.agents.pos[:, 2][alive_agents] | ||
agents_colors = state.agents.color[alive_agents] | ||
|
||
# TODO : see how to add cmap=colormaps["gist_rainbow"] | ||
ax.scatter(agents_x_pos, agents_y_pos, agents_z_pos, c=agents_colors, marker="o", label="Fish") | ||
|
||
ax.set_title("Multi-Agent Simulation") | ||
ax.set_xlabel("X-axis") | ||
ax.set_ylabel("Y-axis") | ||
ax.set_zlabel("Z-axis") | ||
|
||
ax.set_xlim(0, state.grid_size) | ||
ax.set_ylim(0, state.grid_size) | ||
ax.set_zlim(0, state.grid_size) | ||
|
||
ax.legend() | ||
|
||
plt.draw() | ||
plt.pause(0.001) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,10 @@ | ||
from simulationsandbox.environments.two_d_example_env import TwoDEnv | ||
from simulationsandbox.environments.three_d_example_env import ThreeDEnv | ||
from simulationsandbox.environments.lake_env import LakeEnv | ||
from simulationsandbox.environments.aquarium import Aquarium | ||
|
||
ENVS = {"two_d": TwoDEnv, | ||
"three_d": ThreeDEnv, | ||
"lake": LakeEnv | ||
"lake": LakeEnv, | ||
"aquarium": Aquarium | ||
} |