From c443888102e0bd733bea40b140543931b920a2bc Mon Sep 17 00:00:00 2001 From: Karl Palmskog Date: Wed, 26 Jun 2024 19:53:00 +0200 Subject: [PATCH] avoid opaqueness of have in Coq 8.20 and later for transparent definitions --- theories/core/finmap_plus.v | 16 ++++++++-------- theories/core/sgraph.v | 16 ++++++++-------- theories/core/transfer.v | 26 +++++++++++++------------- 3 files changed, 29 insertions(+), 29 deletions(-) diff --git a/theories/core/finmap_plus.v b/theories/core/finmap_plus.v index c322869..d18aa8d 100644 --- a/theories/core/finmap_plus.v +++ b/theories/core/finmap_plus.v @@ -219,12 +219,12 @@ Proof. if x is Some z then Sub (val (f z)) (fset1Ur (valP (f z))) else Sub e fset1U1. pose g_inv (x : e |` E) : option T := match fsetULVR (valP x) with inl _ => None | inr p => Some (f^-1 (Sub (val x) p)) end. - have can_g : cancel g g_inv. + have @can_g : cancel g g_inv. { move => [x|]; rewrite /g/g_inv/=; case: (fsetULVR _) => [|p] //=. - by rewrite inE fsval_eqF. - by rewrite valK' bijK. - exfalso. by rewrite p in He. } - have can_g_inv : cancel g_inv g. + have @can_g_inv : cancel g_inv g. { move => [x Hx]; rewrite /g/g_inv/=. case: (fsetULVR _) => [|p] //=. - rewrite !inE => A. apply: val_inj => /=. by rewrite (eqP A). - apply: val_inj => //=. by rewrite bijK'. } @@ -243,12 +243,12 @@ Proof. if x is inl z then Sub (val (f z)) (fset1Ur (valP (f z))) else Sub e fset1U1. pose g_inv (x : e |` E) : T + unit := match fsetULVR (valP x) with inl _ => inr tt | inr p => inl (f^-1 (Sub (val x) p)) end. - have can_g : cancel g g_inv. + have @can_g : cancel g g_inv. { move => [x|[]]; rewrite /g/g_inv/=; case: (fsetULVR _) => [|p] //=. - by rewrite inE fsval_eqF. - by rewrite valK' bijK. - exfalso. by rewrite p in He. } - have can_g_inv : cancel g_inv g. + have @can_g_inv : cancel g_inv g. { move => [x Hx]; rewrite /g/g_inv/=. case: (fsetULVR _) => [|p] //=. - rewrite !inE => A. apply: val_inj => /=. by rewrite (eqP A). - apply: val_inj => //=. by rewrite bijK'. } @@ -265,18 +265,18 @@ Definition bij_setD (aT : finType) (C : choiceType) (rT : {fset C}) (A : {set aT bij { x | x \in ~: A} (rT `\` [fset val (f x) | x in A]). Proof. set aT' := ({ x | _ }). set rT' := _ `\` _. - have g_proof (x : aT') : val (f (val x)) \in rT'. + have @g_proof (x : aT') : val (f (val x)) \in rT'. { rewrite !inE (valP (f (val x))) andbT. apply: contraTN (valP x). case/imfsetP => /= x0 inA /val_inj /(@bij_injective _ _ f) ->. by rewrite inE negbK. } pose g (x : aT') : rT' := Sub (val (f (val x))) (g_proof x). - have g_inv_proof (x : rT') : f^-1 (Sub (fsval x) (fsetDEl x)) \in ~: A. + have @g_inv_proof (x : rT') : f^-1 (Sub (fsval x) (fsetDEl x)) \in ~: A. { rewrite inE. case/fsetDP: (valP x) => ?. apply: contraNN => X. apply/imfsetP. exists (f^-1 (Sub (fsval x) (fsetDEl x))) => //. by rewrite bijK'. } pose g_inv (x : rT') : aT' := Sub (f^-1 (Sub (val x) (fsetDEl x))) (g_inv_proof x). - have can1 : cancel g g_inv. + have @can1 : cancel g g_inv. { move => [x Hx]. rewrite /g/g_inv. apply: val_inj => /=. apply: (@bij_injective _ _ f). rewrite bijK'. exact: val_inj. } - have can2 : cancel g_inv g. + have @can2 : cancel g_inv g. { move => [x Hx]. rewrite /g/g_inv. apply: val_inj => /=. by rewrite bijK'. } apply: Bij can1 can2. Defined. diff --git a/theories/core/sgraph.v b/theories/core/sgraph.v index 2caa9de..a28c30d 100644 --- a/theories/core/sgraph.v +++ b/theories/core/sgraph.v @@ -144,24 +144,24 @@ End InducedSubgraph. Lemma induced_isubgraph (G : sgraph) (A : {set G}) : induced A ⇀ G. Proof. pose f (x : induced A) : G := val x. -have : {mono f : x y / x -- y} by abstract by move => x y; rewrite induced_edge. -apply: ISubgraph; exact: val_inj. +have @H : {mono f : x y / x -- y} by abstract by move => x y; rewrite induced_edge. +move: H; apply: ISubgraph; exact: val_inj. Defined. Lemma isubgraph_induced (F G : sgraph) (i : F ⇀ G) : F ≃ induced [set x in codom i]. Proof. set A := [set _ in _]. -have jP (x : induced A) : val x \in codom i. +have @jP (x : induced A) : val x \in codom i. abstract by move: (valP x); rewrite inE. pose j (x : induced A) : F := iinv (jP x). -have iP (x : F) : i x \in A by abstract by rewrite inE codom_f. +have @iP (x : F) : i x \in A by abstract by rewrite inE codom_f. pose i' (x : F) : induced A := Sub (i x) (iP x). -have can_i : cancel i' j. +have @can_i : cancel i' j. abstract by move=> x; apply: (isubgraph_inj i); rewrite f_iinv. -have can_j : cancel j i'. +have @can_j : cancel j i'. abstract by move => [x xA]; apply: val_inj; rewrite /j/=f_iinv. -apply: Diso' can_i can_j _. +apply: Diso' can_i can_j _. abstract by move => x y; rewrite induced_edge /= isubgraph_mono. Defined. @@ -1443,7 +1443,7 @@ Qed. Lemma isubgraph_complLR (F G : sgraph) (i : compl F ⇀ G) : F ⇀ compl G. Proof. -have I := isubgraph_inj i; apply: (@ISubgraph F (compl G) i) => // x y. +have @I := isubgraph_inj i; apply: (@ISubgraph F (compl G) i) => // x y. exact: isubgraph_compLR_mono. Defined. diff --git a/theories/core/transfer.v b/theories/core/transfer.v index b82bc95..2573805 100644 --- a/theories/core/transfer.v +++ b/theories/core/transfer.v @@ -574,7 +574,7 @@ Qed. Lemma open_add_edge (x y : G) u : open (G ∔ [x, u, y]) ⩭2 open G ∔ [inj_v x, u, inj_v y]. Proof. - have X : is_graph (add_edge (open G) (inj_v x) u (inj_v y)). + have @X : is_graph (add_edge (open G) (inj_v x) u (inj_v y)). { exact: add_edge_graph. } econstructor. apply: iso2_comp (iso2_sym _) _. apply: openK. @@ -651,21 +651,21 @@ Proof. move: j => [isF isG i] Vz IOz /=. unshelve econstructor. { apply remove_vertex_graph => //; constructor. rewrite (oiso2_pIO (OIso2 i)) // in IOz. } - have E1 : [fset vfun_body i z] = [fset val (i x) | x : vset F & val x \in [fset z]]. (* : / in?? *) + have @E1 : [fset vfun_body i z] = [fset val (i x) | x : vset F & val x \in [fset z]]. (* : / in?? *) { apply/fsetP => k. rewrite inE vfun_bodyE. apply/eqP/imfsetP => /= [->|[x] /= ]. - exists (Sub z Vz) => //. by rewrite !inE. - rewrite !inE => /eqP X ->. move: Vz. rewrite -X => Vz. by rewrite fsvalK. } - have E2 : edges_at G (vfun_body i z) = [fset val (i.e x) | x : eset F & val x \in edges_at F z]. + have @E2 : edges_at G (vfun_body i z) = [fset val (i.e x) | x : eset F & val x \in edges_at F z]. { rewrite (@oiso2_edges_at _ _ (OIso2 i)) //=. apply/fsetP => k. apply/imfsetP/imfsetP. - case => /= x Ix ->. - have Hx : x \in eset F. move: Ix. rewrite edges_atE. by case: (_ \in _). + have @Hx : x \in eset F. move: Ix. rewrite edges_atE. by case: (_ \in _). exists (Sub x Hx) => //. by rewrite efun_bodyE. - case => /= x. rewrite inE => Hx ->. exists (fsval x) => //. by rewrite efun_bodyE fsvalK. } - - have P e (p : e \in eset (F \ z)) : val (i.e (Sub e (fsetDl p))) \in eset G `\` edges_at G (vfun_body i z). + - have @P e (p : e \in eset (F \ z)) : val (i.e (Sub e (fsetDl p))) \in eset G `\` edges_at G (vfun_body i z). { rewrite inE [_ \in eset G]valP andbT E2. apply: contraTN (p). case/imfsetP => /= e0. rewrite inE => A. move/val_inj. move/(@bij_injective _ _ i.e) => ?; subst. by rewrite inE A. } - have Q v (p : v \in vset (F \ z)) : val (i (Sub v (fsetDl p))) \in vset G `\ vfun_body i z. + have @Q v (p : v \in vset (F \ z)) : val (i (Sub v (fsetDl p))) \in vset G `\ vfun_body i z. { rewrite inE [_ \in vset G]valP andbT E1. apply: contraTN (p). case/imfsetP => /= v0. rewrite inE => A. move/val_inj. move/(@bij_injective _ _ i) => ?; subst. by rewrite inE A. } @@ -713,8 +713,8 @@ Lemma oiso2_add_edge (F G : pre_graph) (i : F ⩭2 G) e1 e2 x y u v : F ∔ [e1,x,u,y] ⩭2 G ∔ [e2,i x,v,i y]. Proof. case: i => isF isG i fresh_e1 fresh_e2 Vx Vy uv /=. - have isF' : is_graph (F ∔ [e1, x, u, y]) by abstract exact: add_edge_graph'. - have isG' : is_graph (G ∔ [e2, vfun_body i x, v, vfun_body i y]). + have @isF' : is_graph (F ∔ [e1, x, u, y]) by abstract exact: add_edge_graph'. + have @isG' : is_graph (G ∔ [e2, vfun_body i x, v, vfun_body i y]). by abstract (apply: add_edge_graph'; exact: (oiso2_vset (OIso2 i))). econstructor. apply: iso2_comp. apply: pack_add_edge'. assumption. @@ -728,13 +728,13 @@ Lemma oiso2_remove_edges (F G : pre_graph) (i : F ⩭2 G) E E': E' = [fset efun_of i e | e in E] -> (F - E) ⩭2 (G - E'). Proof. case: i => isF isG i /= S EE'. econstructor. - have X : E' = [fset val (i.e x) | x : eset F & val x \in E]. + have @X : E' = [fset val (i.e x) | x : eset F & val x \in E]. { subst. apply/fsetP => k. apply/imfsetP/imfsetP. - case => /= x Ix ->. - have Hx : x \in eset F. move: Ix. apply: (fsubsetP S). + have @Hx : x \in eset F. move: Ix. apply: (fsubsetP S). exists (Sub x Hx) => //. by rewrite efun_bodyE. - case => /= x. rewrite inE => Hx ->. exists (fsval x) => //. by rewrite efun_bodyE fsvalK. } - have P e (p : e \in eset (F - E)) : val (i.e (Sub e (fsetDl p))) \in eset G `\` E'. + have @P e (p : e \in eset (F - E)) : val (i.e (Sub e (fsetDl p))) \in eset G `\` E'. { rewrite inE [_ \in eset G]valP andbT X. apply: contraTN (p). case/imfsetP => /= e0. rewrite inE => A. move/val_inj. move/(@bij_injective _ _ i.e) => ?; subst. by rewrite inE A. } @@ -775,8 +775,8 @@ Lemma oiso2_add_edge' (F G : pre_graph) (i : F ⩭2 G) Proof with eauto with typeclass_instances. case: i => isF isG i. move => E1 E2 Vx Vy Vx' Vy' Ix Iy uv. - have isF' : is_graph ( F ∔ [e1, x, u, y] ). apply add_edge_graph'... - have isG' : is_graph ( G ∔ [e2, x', v, y']). apply add_edge_graph'... + have @isF' : is_graph ( F ∔ [e1, x, u, y] ). apply add_edge_graph'... + have @isG' : is_graph ( G ∔ [e2, x', v, y']). apply add_edge_graph'... econstructor. apply: iso2_comp. apply: pack_add_edge'. assumption. apply: iso2_comp (iso2_sym _). 2: apply: pack_add_edge'; try assumption.