-
Notifications
You must be signed in to change notification settings - Fork 4
/
DemoLambda.v
322 lines (265 loc) · 7.59 KB
/
DemoLambda.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
Set Implicit Arguments.
Require Export Coq.Program.Equality.
From Dblib Require Import DblibTactics DeBruijn Environments.
(* ---------------------------------------------------------------------------- *)
(* The syntax of untyped lambda-terms. *)
Inductive term :=
| TVar: nat -> term
| TAbs: term -> term
| TApp: term -> term -> term.
(* ---------------------------------------------------------------------------- *)
(* The following definitions allow us to use the [DeBruijn] library. In
particular, [traverse_term] defines the binding structure of terms. *)
Instance Var_term : Var term := {
var := TVar (* avoid eta-expansion *)
}.
Fixpoint traverse_term (f : nat -> nat -> term) l t :=
match t with
| TVar x =>
f l x
| TAbs t =>
TAbs (traverse_term f (1 + l) t)
| TApp t1 t2 =>
TApp (traverse_term f l t1) (traverse_term f l t2)
end.
Instance Traverse_term : Traverse term term := {
traverse := traverse_term
}.
Instance TraverseVarInjective_term : @TraverseVarInjective term _ term _.
Proof.
constructor. prove_traverse_var_injective.
Qed.
Instance TraverseFunctorial_term : @TraverseFunctorial term _ term _.
Proof.
constructor. prove_traverse_functorial.
Qed.
Instance TraverseRelative_term : @TraverseRelative term term _.
Proof.
constructor. prove_traverse_relative.
Qed.
Instance TraverseIdentifiesVar_term : @TraverseIdentifiesVar term _ _.
Proof.
constructor. prove_traverse_identifies_var.
Qed.
Instance TraverseVarIsIdentity_term : @TraverseVarIsIdentity term _ term _.
Proof.
constructor. prove_traverse_var_is_identity.
Qed.
(* ---------------------------------------------------------------------------- *)
(* The following lemmas characterize [lift] and [subst]. In principle, the
user does not need to explicitly state these lemmas, and that is fortunate.
Here, we prove these lemmas only in order to illustrate how the tactics
[simpl_lift] and [simpl_subst] can simplify applications of [lift] and
[subst]. *)
Lemma lift_TVar:
forall w k x,
lift w k (TVar x) = TVar (lift w k x).
Proof.
intros. simpl_lift_goal. reflexivity.
Qed.
Lemma lift_TApp:
forall w k t1 t2,
lift w k (TApp t1 t2) = TApp (lift w k t1) (lift w k t2).
Proof.
(* [simpl_lift_goal] can also be used as a hint for [eauto].
This is useful when this equality goal occurs as a leaf
within a larger automated proof. *)
eauto with simpl_lift_goal.
Qed.
Lemma lift_TAbs:
forall w k t,
lift w k (TAbs t) = TAbs (lift w (1 + k) t).
Proof.
eauto with simpl_lift_goal.
Qed.
Lemma subst_TVar:
forall v k x,
subst v k (TVar x) = subst_idx v k x.
Proof.
intros. simpl_subst_goal. reflexivity.
Qed.
Lemma subst_TApp:
forall v k t1 t2,
subst v k (TApp t1 t2) = TApp (subst v k t1) (subst v k t2).
Proof.
eauto with simpl_subst_goal.
Qed.
Lemma subst_TAbs:
forall v k t,
subst v k (TAbs t) = TAbs (subst (shift 0 v) (1 + k) t).
Proof.
eauto with simpl_subst_goal.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Reduction semantics. *)
Inductive red : term -> term -> Prop :=
| RedBeta:
forall t1 t2 t,
subst t2 0 t1 = t ->
red (TApp (TAbs t1) t2) t
| RedContextTAbs:
forall t1 t2,
red t1 t2 ->
red (TAbs t1) (TAbs t2)
| RedContextTAppLeft:
forall t1 t2 t,
red t1 t2 ->
red (TApp t1 t) (TApp t2 t)
| RedContextTAppRight:
forall t1 t2 t,
red t1 t2 ->
red (TApp t t1) (TApp t t2).
(* The reduction judgement is compatible with weakening. *)
Lemma red_weakening:
forall t1 t2,
red t1 t2 ->
forall x,
red (shift x t1) (shift x t2).
Proof.
induction 1; intros; subst; simpl_lift_goal;
econstructor; eauto with lift_subst.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Working with closedness. *)
(* Again, we prove the following lemmas only in order to illustrate
the use of the tactic [inversion_closed]. *)
Lemma inversion_closed_TVar:
forall k x,
x >= k ->
closed k (TVar x) ->
False.
Proof.
intros. inversion_closed. eauto using closed_var.
Qed.
Lemma inversion_closed_TApp_1:
forall t1 t2 k,
closed k (TApp t1 t2) ->
closed k t1.
Proof.
intros. inversion_closed. assumption.
Qed.
Lemma inversion_closed_TApp_2:
forall t1 t2 k,
closed k (TApp t1 t2) ->
closed k t2.
Proof.
intros. inversion_closed. assumption.
Qed.
Lemma inversion_closed_TAbs:
forall t k,
closed k (TAbs t) ->
closed (1 + k) t.
Proof.
intros. inversion_closed. assumption.
Qed.
(* Reduction preserves closedness. *)
Lemma red_closed:
forall t1 t2,
red t1 t2 ->
forall k,
closed k t1 ->
closed k t2.
Proof.
induction 1; intros; subst; inversion_closed; try construction_closed.
(* Case RedBeta. *)
eauto using @subst_preserves_closed with typeclass_instances.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Simple types. *)
(* These types do not contain any variables. They have no binding structure. *)
Inductive ty :=
| TyIota: ty
| TyArrow: ty -> ty -> ty.
(* The typing judgement of the simply-typed lambda-calculus. *)
Inductive j : env ty -> term -> ty -> Prop :=
| JVar:
forall E x T,
lookup x E = Some T ->
j E (TVar x) T
| JAbs:
forall E t T1 T2,
j (insert 0 T1 E) t T2 ->
j E (TAbs t) (TyArrow T1 T2)
| JApp:
forall E t1 t2 T1 T2,
j E t1 (TyArrow T1 T2) ->
j E t2 T1 ->
j E (TApp t1 t2) T2.
Hint Constructors j : j.
(* ---------------------------------------------------------------------------- *)
(* The typing judgement is compatible with weakening, i.e., inserting a new
term variable. *)
Lemma weakening:
forall E t T,
j E t T ->
forall x U E',
insert x U E = E' ->
j E' (shift x t) T.
Proof.
induction 1; intros; subst; simpl_lift_goal;
econstructor; eauto with lookup_insert insert_insert.
Qed.
(* The typing judgement is compatible with substitution, i.e., substituting a
well-typed term for a term variable. *)
Lemma substitution:
forall E x t2 T1 T2,
j (insert x T1 E) t2 T2 ->
forall t1,
j E t1 T1 ->
j E (subst t1 x t2) T2.
Proof.
do 5 intro; intro h; dependent induction h; intros; simpl_subst_goal;
(* General rule. *)
try solve [ econstructor; eauto using weakening with insert_insert ].
(* Case TVar. *)
unfold subst_idx. dblib_by_cases; lookup_insert_all; eauto with j.
Qed.
(* The typing judgement is preserved by reduction. Note that this is
proved for an arbitrary environment [E]: we do not restrict our
attention to closed terms. *)
Lemma type_preservation:
forall t1 t2,
red t1 t2 ->
forall E T,
j E t1 T ->
j E t2 T.
Proof.
induction 1; intros ? ? h; subst; dependent destruction h; eauto with j.
(* Case RedBeta. *)
match goal with h: j _ (TAbs _) _ |- _ =>
inversion h; clear h; subst
end.
eauto using substitution.
Qed.
(* ---------------------------------------------------------------------------- *)
(* The following lemmas are not needed here, but could be useful in other
settings. *)
(* A term that is well-typed under the empty environment is closed. *)
Lemma j_closed:
forall E t T,
j E t T ->
forall k,
length E <= k ->
closed k t.
Proof.
induction 1; intros; construction_closed.
Qed.
(* A term that is well-typed under the empty environment is well-typed
under every environment. *)
Lemma j_agree:
forall E1 t T,
j E1 t T ->
forall E2 k,
agree E1 E2 k ->
length E1 <= k ->
j E2 t T.
Proof.
induction 1; intros; eauto with j length agree lia.
Qed.
Lemma j_empty:
forall E t T,
j (@empty _) t T ->
j E t T.
Proof.
eauto using j_agree with length agree.
Qed.