-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathindex.html
36 lines (33 loc) · 1.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
<html>
<title> Functions and their specification </title>
<body bgcolor=#08FFFF>
<h1> Functions and their specification </h1>
<a href="SRC/chap9.v"> Scripts from the book </a>
<h2> Exercises </h2>
<a href="extract.html"> Exercises 9.1 page 253 and 9.2 page 254 </a> Witness Extraction
<br>
<br> <a href="exo_eqdec.html"> Exercise 9.4 page 254 </a> Equality on nat is decideable
<br> <a href="moreperms.html"> Exercise 9.5 page 256 </a> More on permutations
<br> <a href="div3.html"> Exercise 9.6 page 270 </a> A three step induction proof
<br> <a href="mod2.html"> Exercise 9.7 page 270 </a> A two step induction proof
<br> <a href="fib_intro.html"> Exercise 9.8 page 270 </a> The fibonacci sequence
<br> <a href="fib_ind.html"> Exercise 9.10 page 271 </a> Reasoning on the fibonacci sequence
<br> <a href="even_odd.html"> Formal specification of a parity test </a>
<br> <a href="div2tofib-ind.html"> Exercise 9.11 page 271 </a> Proofs using specific induction principles
<br> <a href="div2_mod2.html"> Exercise 9.12 page 270 </a> Euclidean division by 2
<br> <a href="plus_prim.html"> Exercise 9.13 page 276 </a> Another addition function
<br> <a href="plusss.html"> Exercise 9.14 page 276 </a> Associativity of the tail recursively defined addition
<br> <a href="fib_tail.html"> Exercise 9.15 page 276 </a> A tail recursive Fibonacci function
<br> <a href="sqrt.html"> Exercise 9.16 page 284 </a> Computing square roots
<br> <a href="fib_positive.html"> Exercise 9.17 page 284 </a>An efficient Fibonacci function on binary numbers
<br>
<br>
<hr>
<h2> Errata </h2>
<ol>
<li> page 252 (last paragraph of 9.1.1) and page 254 (last paragraph
of 9.1.2). The old-fashioned syntax of abstraction : "<tt>[x:A]<em>E</em></tt>"
must be replaced by "<tt>fun x:A => <em>E</em> </tt>"
</ol>
</body>
</html>