-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathproDA.R
650 lines (559 loc) · 24.2 KB
/
proDA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#' proDA: Identify differentially abundant proteins in label-free mass spectrometry
#'
#' Account for missing values in label-free mass spectrometry data
#' without imputation. The package implements a probabilistic dropout model that
#' ensures that the information from observed and missing values are properly
#' combined. It adds empirical Bayesian priors to increase power to detect
#' differentially abundant proteins.
#'
#'
#' @docType package
#' @name proDA_package
NULL
#' @import stats methods
#' @importFrom SummarizedExperiment SummarizedExperiment rowData rowData<-
#' colData colData<- mcols mcols<- assay assay<- assayNames assayNames<-
#' assays assays<- rbind cbind
#' @importFrom BiocGenerics design
#' @importFrom utils .DollarNames read.delim
NULL
## quiets concerns of R CMD check re: the .'s that appear in pipelines
if(getRversion() >= "2.15.1") utils::globalVariables(c("Condition1", "Condition2"))
#' Main function to fit the probabilistic dropout model
#'
#' The function fits a linear probabilistic dropout model and infers
#' the hyper-parameters for the location prior, the variance prior,
#' and the dropout curves. In addition it infers for each protein
#' the coefficients that best explain the observed data and the
#' associated uncertainty.
#'
#' By default, the method is moderating the locations and the variance
#' of each protein estimate. The variance moderation is fairly standard
#' in high-throughput experiments and can boost the power to detect
#' differentially abundant proteins. The location moderation is important
#' to handle the edge case where in one condition a protein is not observed
#' in any sample. In addition it can help to get more precise estimates
#' of the difference between conditions. Unlike 'DESeq2', which moderates
#' the coefficient estimates (ie. the "betas") to be centered around zero,
#' 'proDA' penalizes predicted intensities that strain far from the other
#' observed intensities.
#'
#' @param data a matrix like object (\code{matrix()},
#' \code{SummarizedExperiment()}, or anything that can be cast to
#' \code{SummarizedExperiment()} (eg. `MSnSet`, `eSet`, ...)) with
#' one column per
#' sample and one row per protein. Missing values should be
#' coded as \code{NA}.
#' @param design a specification of the experimental design that
#' is used to fit the linear model. It can be a \code{model.matrix()}
#' with one row for each sample and one column for each
#' coefficient. It can also be a formula with the entries referring
#' to global objects, columns in the \code{col_data} argument or
#' columns in the \code{colData(data)} if data is a
#' \code{SummarizedExperiment}. Thirdly, it can be a vector that
#' for each sample specifies the condition of that sample.
#' Default: \code{~ 1}, which means that all samples are treated
#' as if they are in the same condition.
#' @param col_data a data.frame with one row for each sample in
#' \code{data}. Default: \code{NULL}
#' @param reference_level a string that specifies which level in a
#' factor coefficient is used for the intercept. Default:
#' \code{NULL}
#' @param data_is_log_transformed the raw intensities from mass
#' spectrometry experiments have a linear mean-variance relation.
#' This is undesirable and can be removed by working on the log
#' scale. The easiest way to find out if the data is already log-
#' transformed is to see if the intensities are in the range of
#' `0` to `100` in which case they are transformed or if they rather
#' are between `1e5` to `1e12`, in which case they are not.
#' Default: \code{TRUE}
#' @param moderate_location,moderate_variance boolean values
#' to indicate if the location and the variances are
#' moderated. Default: \code{TRUE}
#' @param location_prior_df the number of degrees of freedom used
#' for the location prior. A large number (> 30) means that the
#' prior is approximately Normal. Default: \code{3}
#' @param n_subsample the number of proteins that are used to estimate the
#' hyper-parameter. Reducing this number can speed up the fitting, but
#' also mean that the final estimate is less precise. By default all
#' proteins are used. Default: \code{nrow(data)}
#' @param max_iter the maximum of iterations \code{proDA()} tries
#' to converge to the hyper-parameter estimates. Default:
#' \code{20}
#' @param epsilon if the remaining error is smaller than \code{epsilon}
#' the model has converged. Default: \code{1e-3}
#' @param verbose boolean that signals if the method prints messages
#' during the fitting. Default: \code{FALSE}
#' @param ... additional parameters for the construction of the
#' 'proDAFit' object
#'
#' @return
#' An object of class 'proDAFit'. The object contains information
#' on the hyper-parameters and feature parameters, the convergence,
#' the experimental design etc. Internally, it is a sub-class of
#' \code{SummarizedExperiment} which means the object is subsettable.
#' The `$`-operator is overloaded for this object to make it easy to
#' discover applicable functions.
#'
#'
#' @examples
#'
#' # Quick start
#'
#' # Import the proDA package if you haven't already done so
#' # library(proDA)
#' set.seed(1)
#' syn_data <- generate_synthetic_data(n_proteins = 10)
#' fit <- proDA(syn_data$Y, design = syn_data$groups)
#' fit
#' result_names(fit)
#' test_diff(fit, Condition_1 - Condition_2)
#'
#' # SummarizedExperiment
#' se <- generate_synthetic_data(n_proteins = 10,
#' return_summarized_experiment = TRUE)
#' se
#' proDA(se, design = ~ group)
#'
#' # Design using model.matrix()
#' data_mat <- matrix(rnorm(5 * 10), nrow=10)
#' colnames(data_mat) <- paste0("sample", 1:5)
#' annotation_df <- data.frame(names = paste0("sample", 1:5),
#' condition = c("A", "A", "A", "B", "B"),
#' age = rnorm(5, mean=40, sd=10))
#'
#' design_mat <- model.matrix(~ condition + age,
#' data=annotation_df)
#' design_mat
#' proDA(data_mat, design_mat, col_data = annotation_df)
#'
#'
#' @export
proDA <- function(data, design=~ 1,
col_data = NULL,
reference_level = NULL,
data_is_log_transformed = TRUE,
moderate_location = TRUE,
moderate_variance = TRUE,
location_prior_df = 3,
n_subsample = nrow(data),
max_iter = 20,
epsilon = 1e-3,
verbose=FALSE, ...){
# Validate Data
if(! is.matrix(data) && !is(data, "SummarizedExperiment")){
# Check if data can be cast to SummarizedExperiment otherwise throw error
if(canCoerce(data, "SummarizedExperiment")){
data <- as(data, "SummarizedExperiment")
}else{
stop("Cannot handle data of class", class(data), ". It must be of type",
"matrix or it should be possible to cast it to SummarizedExperiment")
}
}
n_samples <- ncol(data)
n_rows <- nrow(data)
# Handle the design parameter
if(is.matrix(design)){
model_matrix <- design
design_formula <- NULL
}else if((is.vector(design) || is.factor(design))){
if(length(design) != n_samples){
stop(paste0("The specified design vector length (", length(design), ") does not match ",
"the number of samples: ", n_samples))
}
model_matrix <- convert_chr_vec_to_model_matrix(design, reference_level)
design_formula <- NULL
}else if(inherits(design,"formula")){
if(design == formula(~ 1) && is.null(col_data)){
col_data <- as.data.frame(matrix(numeric(0), nrow=n_samples))
}
compl_col_data <- if(is(data, "SummarizedExperiment")){
if(is.null(col_data)) colData(data)
else cbind(col_data, colData(data))
}else{
col_data
}
model_matrix <- convert_formula_to_model_matrix(design, compl_col_data, reference_level)
design_formula <- design
}else{
stop(paste0("design argment of class ", class(design), " is not supported. Please ",
"specify a `model_matrix`, a `character vector`, or a `formula`."))
}
rownames(model_matrix) <- colnames(data)
check_valid_model_matrix(model_matrix, data)
# Extract the raw data matrix
if(is.matrix(data)){
if(any(! is.na(data) & data == 0)){
if(any(is.na(data))){
warning(paste0("The data contains a mix of ", sum(! is.na(data) & data == 0) ," exact zeros ",
"and ", sum(is.na(data)), " NA's. Will treat the zeros as valid input and not replace them with NA's."))
}else{
warning(paste0("The data contains ", sum(! is.na(data) & data == 0) ," exact zeros and no NA's.",
"Replacing all exact zeros with NA's."))
data[! is.na(data) & data == 0] <- NA
}
}
if(! data_is_log_transformed){
data <- log2(data)
}
data_mat <- data
}else if(is(data, "SummarizedExperiment")){
if(any(! is.na(assay(data)) & assay(data) == 0)){
if(any(is.na(assay(data)))){
warning(paste0("The data contains a mix of ", sum(! is.na(assay(data)) & assay(data) == 0) ," exact zeros ",
"and ", sum(is.na(assay(data))), " NA's. Will treat the zeros as valid input and not replace them with NA's."))
}else{
warning(paste0("The data contains ", sum(! is.na(assay(data)) & assay(data) == 0) ," exact zeros and no NA's.",
"Replacing all exact zeros with NA's."))
assay(data)[! is.na(assay(data)) & assay(data) == 0] <- NA
}
}
if(! data_is_log_transformed){
assay(data) <- log2(assay(data))
}
data_mat <- assay(data)
# Delete superfluous assays
assays(data)[seq_len(length(assays(data)) - 1) + 1] <- NULL
}else{
stop("data of tye ", class(data), " is not supported.")
}
n_subsample <- min(nrow(data_mat), n_subsample)
sub_sample_mat <- data_mat[seq_len(n_subsample), ,drop=FALSE]
fit_result <- fit_parameters_loop(sub_sample_mat, model_matrix,
location_prior_df = location_prior_df,
moderate_location = moderate_location,
moderate_variance = moderate_variance,
max_iter = max_iter,
epsilon = epsilon,
verbose = verbose)
feat_df <- as.data.frame(mply_dbl(fit_result$feature_parameters, function(f){
unlist(f[-c(1,2)])
}, ncol = 4))
coef_mat <- mply_dbl(fit_result$feature_parameters, function(f){
f$coefficients
}, ncol=ncol(model_matrix))
colnames(coef_mat) <- names(fit_result$feature_parameters[[1]]$coefficients)
coef_var_list <- lapply(fit_result$feature_parameters, function(.x) .x$coef_variance_matrix)
fit <- proDAFit(data[seq_len(n_subsample), ,drop=FALSE], col_data,
dropout_curve_position = fit_result$hyper_parameters$dropout_curve_position,
dropout_curve_scale = fit_result$hyper_parameters$dropout_curve_scale,
feature_parameters = feat_df,
coefficients = coef_mat,
coef_var = coef_var_list,
design_matrix = model_matrix,
design_formula = design_formula,
reference_level = reference_level,
location_prior_mean = fit_result$hyper_parameters$location_prior_mean,
location_prior_scale = fit_result$hyper_parameters$location_prior_scale,
location_prior_df = location_prior_df,
variance_prior_scale = fit_result$hyper_parameters$variance_prior_scale,
variance_prior_df = fit_result$hyper_parameters$variance_prior_df,
convergence = fit_result$convergence, ...)
if(n_subsample != nrow(data)){
sel <- seq_len(nrow(data) - n_subsample) + n_subsample
if(verbose){
message("Predict feature parameters for remaining ", length(sel), " proteins.")
}
# Make predictions for remainig values
if(is(data, "SummarizedExperiment") && ! is.null(rowData(data))){
fit2 <- predict(fit, newdata = data_mat[sel, ,drop=FALSE],
type = "feature_parameters",
rowData = rowData(data)[sel, ,drop=FALSE])
}else{
fit2 <- predict(fit, newdata = data_mat[sel, ,drop=FALSE],
type = "feature_parameters")
}
rbind(fit, fit2)
}else{
fit
}
}
fit_parameters_loop <- function(Y, model_matrix, location_prior_df,
moderate_location, moderate_variance,
max_iter, epsilon, verbose=FALSE){
if(verbose){
message("Fitting the hyper-parameters for the probabilistic dropout model.")
}
# Initialization
n_samples <- ncol(Y)
Y_compl <- Y
Y_compl[is.na(Y)] <- rnorm(sum(is.na(Y)), mean=quantile(Y, probs=0.1, na.rm=TRUE), sd=sd(Y,na.rm=TRUE)/5)
res_init <- lapply(seq_len(nrow(Y)), function(i){
pd_lm.fit(Y_compl[i, ], model_matrix,
dropout_curve_position = rep(NA, n_samples),
dropout_curve_scale =rep(NA, n_samples),
verbose=verbose)
})
Pred_init <- msply_dbl(res_init, function(x) x$coefficients) %*% t(model_matrix)
Pred_init_var <- mply_dbl(seq_len(nrow(Y)), function(i){
vapply(seq_len(nrow(model_matrix)), function(j)
t(model_matrix[j,]) %*% res_init[[i]]$coef_variance_matrix %*% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
s2_init <- vapply(res_init, function(x) x[["s2"]], 0.0)
df_init <- vapply(res_init, function(x) x[["df"]], 0.0)
if(moderate_location){
lp <- location_prior(model_matrix,
Pred_reg = Pred_init,
Pred_unreg = Pred_init,
Pred_var_reg = Pred_init_var,
Pred_var_unreg = Pred_init_var)
mu0 <- lp$mu0
sigma20 <- lp$sigma20
}else{
mu0 <- NA_real_
sigma20 <- NA_real_
}
dc <- dropout_curves(Y, model_matrix, Pred_init, Pred_init_var)
rho <- dc$rho
zetainv <- dc$zetainv
if(moderate_variance){
vp <- variance_prior(s2_init, df_init)
tau20 <- vp$tau20
df0_inv <- vp$df0_inv
}else{
tau20 <- NA_real_
df0_inv <- NA_real_
}
last_round_params <- list(mu0, sigma20, rho, zetainv, tau20, df0_inv)
converged <- FALSE
iter <- 1
error <- NA
res_reg <- res_init
res_unreg <- res_init
while(! converged && iter <= max_iter){
if(verbose){
message(paste0("Starting iter: ", iter))
}
res_unreg <- lapply(seq_len(nrow(Y)), function(i){
pd_lm.fit(Y[i, ], model_matrix,
dropout_curve_position = rho, dropout_curve_scale = 1/zetainv,
verbose=verbose)
})
if(moderate_location || moderate_variance){
res_reg <- lapply(seq_len(nrow(Y)), function(i){
pd_lm.fit(Y[i, ], model_matrix,
dropout_curve_position = rho, dropout_curve_scale = 1/zetainv,
location_prior_mean = mu0, location_prior_scale = sigma20,
variance_prior_scale = tau20, variance_prior_df = 1/df0_inv,
location_prior_df = location_prior_df,
verbose=verbose)
})
}else{
res_reg <- res_unreg
}
Pred_unreg <- msply_dbl(res_unreg, function(x) x$coefficients) %zero_dom_mat_mult% t(model_matrix)
Pred_reg <- msply_dbl(res_reg, function(x) x$coefficients) %zero_dom_mat_mult% t(model_matrix)
Pred_var_unreg <- mply_dbl(seq_len(nrow(Y)), function(i){
vapply(seq_len(nrow(model_matrix)), function(j)
t(model_matrix[j,]) %zero_dom_mat_mult% res_unreg[[i]]$coef_variance_matrix %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
Pred_var_reg <- mply_dbl(seq_len(nrow(Y)), function(i){
vapply(seq_len(nrow(model_matrix)), function(j)
t(model_matrix[j,]) %zero_dom_mat_mult% res_reg[[i]]$coef_variance_matrix %zero_dom_mat_mult% model_matrix[j,],
FUN.VALUE = 0.0)
}, ncol=ncol(Y))
s2_unreg <- vapply(res_unreg, function(x) x[["s2"]], 0.0)
df_unreg <-vapply(res_unreg, function(x) x[["df"]], 0.0)
if(moderate_location){
lp <- location_prior(model_matrix,
Pred_reg = Pred_reg,
Pred_unreg = Pred_unreg,
Pred_var_reg = Pred_var_reg,
Pred_var_unreg = Pred_var_unreg)
mu0 <- lp$mu0
sigma20 <- lp$sigma20
}
dc <- dropout_curves(Y, model_matrix, Pred_reg, Pred_var_reg)
rho <- dc$rho
zetainv <- dc$zetainv
if(moderate_variance){
vp <- variance_prior(s2_unreg, df_unreg)
tau20 <- vp$tau20
df0_inv <- vp$df0_inv
}
error <- sum(mapply(function(new, old) {
sum(new - old, na.rm=TRUE)/length(new)
}, list(mu0, sigma20, rho, zetainv, tau20, df0_inv), last_round_params)^2)
if (error < epsilon) {
if(verbose){
message("Converged!")
}
converged <- TRUE
}
last_round_params <- list(mu0, sigma20, rho, zetainv, tau20, df0_inv)
if(verbose){
log_parameters(last_round_params)
message(paste0("Error: ", sprintf("%.2g", error)), "\n")
}
iter <- iter + 1
}
convergence <- list(successful = converged, iterations = iter-1, error = error)
names(last_round_params) <- c("location_prior_mean", "location_prior_scale",
"dropout_curve_position", "dropout_curve_scale",
"variance_prior_scale", "variance_prior_df")
last_round_params[["dropout_curve_scale"]] <- 1/last_round_params[["dropout_curve_scale"]]
last_round_params[["variance_prior_df"]] <- 1/last_round_params[["variance_prior_df"]]
list(hyper_parameters = last_round_params,
convergence = convergence,
feature_parameters = lapply(res_reg, function(x) x[c("coefficients", "coef_variance_matrix", "n_approx", "df", "s2", "n_obs")]))
}
variance_prior <- function(s2, df){
stopifnot(length(s2) == length(df) || length(df) == 1)
if(any(df <= 0, na.rm=TRUE)){
stop(paste0("All df must be positive. ", paste0(which(df < 0), collapse=", "), " are not."))
}
if(any(s2 <= 0, na.rm=TRUE)){
stop(paste0("All s2 must be positive. ", paste0(which(s2 < 0), collapse=", "), " are not."))
}
opt_res <- optim(par=c(tau=1, dfinv=1), function(par){
if(par[1] < 0 || par[2] < 0 ) return(Inf)
-sum(df(s2/par[1], df1=df, df2=1/par[2], log=TRUE) - log(par[1]), na.rm=TRUE)
})
if(opt_res$convergence != 0){
warning("Model didn't not properly converge\n")
print(opt_res)
}
list(tau20 = unname(opt_res$par[1]), df0_inv=unname(opt_res$par[2]))
}
location_prior <- function(X, Pred_reg, Pred_unreg,
Pred_var_reg, Pred_var_unreg,
min_var = 0, max_var = 1e3){
mu0 = mean(Pred_reg, trim=0.2, na.rm=TRUE)
# Fill up missing values above mu0 with regularized estimates
pred <- ifelse(is.na(c(Pred_unreg)), c(Pred_reg), c(Pred_unreg))
larger_than_mu0 <- which(c(Pred_reg) > mu0)
pred <- (pred - mu0)[larger_than_mu0]
pred_var <- ifelse(is.na(c(Pred_unreg)), c(Pred_var_reg), c(Pred_var_unreg))
pred_var <- pred_var[larger_than_mu0]
objective_fun <- function(A){
sum((pred^2 - pred_var) / (2 * (A + pred_var)^2), na.rm=TRUE) / sum(1/(2 * (A + pred_var)^2), na.rm=TRUE) - A
}
if(sign(objective_fun(min_var)) == sign(objective_fun(max_var))){
root <- list(root = sum(pred^2) / length(pred))
}else{
root <- uniroot(objective_fun, lower=min_var, upper=max_var)
}
list(mu0 = mu0, sigma20 = root$root)
}
dropout_curves <- function(Y, X, Pred, Pred_var){
n_samples <- nrow(X)
mu0 <- mean(Pred, trim=0.2, na.rm=TRUE)
sigma20 <- mean((mu0 - Pred)^2, trim=0.2, na.rm=TRUE)
if(sigma20 == 0){
sigma20 <- 5 # Not ideal. But what else can I do...
}
rho <- rep(NA, n_samples)
zetainv <- rep(NA, n_samples)
for(colidx in seq_len(n_samples)){
y <- Y[, colidx]
yo <- y[! is.na(y)]
predm <- Pred[is.na(y), colidx]
pred_var_m <- Pred_var[is.na(y), colidx]
if(any(is.na(y))){
opt_res <- optim(par=c(rho=mu0, zetainv=-1/sqrt(sigma20)), function(par){
if(par[2] >= 0) return(Inf)
val <- 0 +
dnorm(par[1], mu0, sd=sqrt(sigma20), log=TRUE) +
min(log(abs(par[2])), log(1e4)) +
sum(invprobit(yo, par[1], 1/par[2], log=TRUE, oneminus = TRUE), na.rm=TRUE) +
sum(invprobit(predm, par[1], sign(par[2]) * sqrt(1/par[2]^2 + pred_var_m), log=TRUE), na.rm=TRUE)
-val
})
if(opt_res$convergence != 0){
if(abs(opt_res$par[2]) > 1e4 && abs(opt_res$par[1] - min(yo))){
# Do nothing, because it simply converged to the extreme case of a hard limit just be
# below the smallest observation
}else{
warning("Dropout curve estimation did not properly converge")
}
}
rho[colidx] <- opt_res$par[1]
zetainv[colidx] <- if(abs(opt_res$par[2]) > 1e4){
-1e4
}else{
opt_res$par[2]
}
}else{
rho[colidx] <- NA_real_
zetainv[colidx] <- NA_real_
}
}
list(rho=rho, zetainv=zetainv)
}
check_valid_model_matrix <- function(matrix, data){
stopifnot(is.matrix(matrix))
stopifnot(nrow(matrix) == ncol(data))
if(qr(matrix)$rank < ncol(matrix)){
stop("The model_matrix is not full rank. Some covariates are probably colinear or individual columns of the model_matrix are completely zero.")
}
}
convert_chr_vec_to_model_matrix <- function(design, reference_level){
if(! is.factor(design)){
design_fct <- as.factor(design)
}else{
design_fct <- design
}
if(length(levels(design_fct)) == 1){
# All entries are identical build an intercept only model
mm <- matrix(1, nrow=length(design_fct), ncol=1)
colnames(mm) <- levels(design_fct)
}else if(is.null(reference_level)){
helper_df <- data.frame(x_ = design_fct)
mm <- stats::model.matrix.default(~ x_ - 1, helper_df)
colnames(mm) <- sub("^x_", "", colnames(mm))
}else{
design_fct <- stats::relevel(design_fct, ref = reference_level)
helper_df <- data.frame(x_ = design_fct)
mm <- stats::model.matrix.default(~ x_ + 1, helper_df)
colnames(mm)[-1] <- paste0(sub("^x_", "", colnames(mm)[-1]), "_vs_", reference_level)
}
colnames(mm)[colnames(mm) == "(Intercept)"] <- "Intercept"
mm
}
convert_formula_to_model_matrix <- function(formula, col_data, reference_level=NULL){
if(! is.null(reference_level)){
has_ref_level <- vapply(col_data, function(x){
any(!is.na(x) & x == reference_level)
}, FUN.VALUE = FALSE)
if(all(has_ref_level == FALSE)){
stop("None of the columns contains the specified reference_level.")
}
col_data[has_ref_level] <- lapply(col_data[has_ref_level], function(col){
if(is.character(col)){
col <- as.factor(col)
}
stats::relevel(col, ref = reference_level)
})
}
mm <- stats::model.matrix.default(formula, col_data)
colnames(mm)[colnames(mm) == "(Intercept)"] <- "Intercept"
mm
}
log_parameters <- function(hp){
names(hp) <- c("location_prior_mean", "location_prior_scale",
"dropout_curve_position", "dropout_curve_scale",
"variance_prior_scale", "variance_prior_df")
hyper_para_txt <- paste0("The inferred parameters are:\n",
paste0(vapply(seq_along(hp), function(idx){
pretty_num <- if(names(hp)[idx] == "dropout_curve_scale"){
scales <- hp[[idx]]
ifelse(is.na(scales) | 1/scales > -100,
formatC(1/scales, digits=3, width=1, format="g"),
"< -100")
}else if(names(hp)[idx] == "variance_prior_df"){
if(is.na(hp[[idx]]) || 1/hp[[idx]] < 100){
formatC(1/hp[[idx]], digits=3, width=1, format="g")
}else{
"> 100"
}
}else{
formatC(hp[[idx]], digits=3, width=1, format="g")
}
paste0(names(hp)[idx], ":",
paste0(rep(" ", times=24-nchar(names(hp)[idx])), collapse=""),
paste0(pretty_num, collapse=", "))
}, FUN.VALUE = ""), collapse = "\n"))
message(hyper_para_txt)
}