We provide the pretrained HyperSeg-3B model weights. Please download them from HyperSeg-3B and put them under the current path.
deepspeed /eval/eval_refcoco.py \
--image_folder /dataset/coco/train2014 \
--json_path /dataset/RES/refcoco/refcoco_val.json \
--model_path /model/HyperSeg-3B \
--output_dir /output/RES \
deepspeed /eval/eval_ReasonSeg.py \
--reason_path /dataset/ReasonSeg \
--model_path /model/HyperSeg-3B \
--output_dir /output/ReasonSeg \
--reason_seg_data ReasonSeg|val \
deepspeed /eval/eval_ReasonVOS.py \
--revos_path /dataset/ReVOS \
--model_path /model/HyperSeg-3B \
--save_path /output/ReasonVOS \
Refer to MMBench GitHub to download the benchmark dataset.
sh hyperseg/eval/script/test_mmb.sh
The response file can be found in /output/mmb/answers_upload
. You can submit the Excel file to submission link to obtain the evaluation scores.
Refer to here to prepare the VQAv2 benchmark dataset.
sh hyperseg/eval/script/test_vqav2.sh
The response file can be found in /output/vqav2/vqav2_answers_upload.json
. You can submit the json
response file to submission link (Test-Dev Phase) to obtain the evaluation scores.