-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.qmd
838 lines (552 loc) · 22.4 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
# Planning
- 9h-10h: Introduction to Computo and Quarto
- 10h-10h30: Coffee break/Discussion
- 10h30-11h30: Hands-on with a toy example
- 11h30-12h30: Follow-up and optional personal article submission
## Learning objectives
- Understand the benefits of reproducible research
- Learn how to create a quarto document
- Learn how to include code, data, and narrative text in a quarto document
- Learn how to submit a quarto document to Computo
- How to navigate the Computo submission process (optional)
# Short introduction to Computo and quarto
## Team
::: columns
::: {.column width="60%"}
Editorial board
:::
::: {.column width="10%"}
:::
::: {.column width="20%"}
IT support
:::
:::
::: columns
::: {.column width="20%"}
::: people
![](./people/julien.jpg){width="120"}
#### Julien Chiquet <small>(chief editor)</small>
<small>Stat. learning, DR INRAE<br/> Paris-Saclay University</small>
:::
:::
::: {.column width="20%"}
::: people
![](./people/pierre.jpg){width="120"}
#### Pierre Neuvial
<small>Statistique, DR CNRS<br/> IMT Toulouse<br/></small>
:::
:::
::: {.column width="20%"}
::: people
![](./people/mathurin.jpg){width="120"}
#### Mathurin Massias
<small>Optim./Machine-Learning<br/> CR INRIA Lyon</small>
:::
:::
::: {.column width="10%"}
:::
::: {.column width="20%"}
::: people
![](./people/fradav.jpg){width="120"}
#### Fra.-Dav. Collin
<small>CS/Stats/ML, IR CNRS<br/> IMAG, Montpellier University</small>
:::
:::
:::
::: columns
::: {.column width="20%"}
::: people
![](./people/nelle.jpg){width="120"}
#### Nelle Varoquaux
<small>Machine learning, CR CNRS<br/> Grenoble Alpes University</small>
:::
:::
::: {.column width="20%"}
::: people
![](./people/marie-pierre.jpg){width="120"}
#### Marie-Pierre Étienne
<small>Statistics, MCF<br/> Institut Agro Rennes-Angers</small>
:::
:::
::: {.column width="20%"}
::: people
![](./people/chloe.jpg){width="120"}
#### Chloé Azencott
<small>Machine Learning <br/> CR MinesParisTech</small>
:::
:::
::: {.column width="10%"}
:::
::: {.column width="20%"}
::: people
![](./people/ghislain.jpg){width="120"}
#### Ghislain Durif
<small>Stats/ML/dev, IR CNRS<br/> LBMC, ENS LYON</small>
:::
:::
:::
## What is reproducible research?
Fundamentally, it provides three things:
:::: { layout="[[20,80],[20,80],[20,80]]" layout-valign="center"}
![](img/mix.svg){ width="100" }
:::{.fragment}
Tools to reproduce the results (that’s like cooking)
:::
![](img/recipe.svg){ width="100" }
:::{.fragment}
A “recipe” to reproduce the results (still like cooking)
:::
![](img/head-side-thinking.svg){ width="100" height="100" }
:::{.fragment}
A path to understanding the results and the process that led to them (unlike cooking…^[Even so, we may discuss the fact that blindly following recipes will not make you a good cook.])
:::
::::
## Pre-Computo era
:::::{.r-stack}
::: {layout-ncol=2 .fragment }
::::{}
![](img/gutenberg-press.png)
::::
::::{}
The pdf era and paper submission.
The reproducibility was not a priority:
- Tools has to be bought, installed, and maintained
- Data and code were not shared (social engineering
- Even methodology details are often missing
::::
:::
![](img/perplex-scentist.jpg){ .center .fragment width="600"}
:::::
::: {.notes}
Social engineering is required to get reproducible results: at best you just have to ask the authors, at worst you have to reverse-engineer everything… and have no guarantee whatsoever to get to the same results, when authors are in a "Après moi, le déluge" mood and ditch, forget or let it crumble once the paper is published.
:::
## Pre-Computo era (2)
![](img/minority-report_header.webp){ width="600" fig-align="center" }
:::{.fragment}
And then in the Machine Learning domain, there was [distill.pub](https://distill.pub/2016/misread-tsne/){preview-link="true"} @olah2017research
::::{.incremental}
- state-of-the art visualizations
- paradigm shift in the scientific publication: **“distillation” of complex ideas**
- 100% reproducible (just a git clone and a few standard commands)
::::
:::
:::{ .fragment style="font-size: 1.8em;"}
but…
:::
## Pre-Computo era (3)
:::{ layout="[45,-10,45]"}
![](img/hard-work.webp)
:::::{}
:::{.fragment}
… **engineering was too complex** for the average scientist (a lot of javascript, etc.)
:::
:::{.fragment}
In fact, the distill.pub project was discontinued in 2021 @team2021distill
:::
:::::{.content-hidden unless-format="revealjs"}
::::{.r-stack}
:::{.r-fit-text layout-align="center" style="color: lightgray;"}
distill.pub
:::
![](img/RIP.png){width="400" fig-align="center" .fragment }
::::
:::::
:::::
:::
::: {.notes}
Due to a series of burnouts from the staff
:::
:::::{.content-hidden unless-format="revealjs"}
## The Rise of the Pragmatic { auto-animate=true }
[distill.pub](https://distill.pub)’s goals were right, but they outpaced themselves in terms of development complexity.
:::{.incremental}
- **Computo** is a fresh start with a pragmatic approach
- leverage what the scientific community is already using (Rmarkdown, Jupyter notebooks, etc.)
:::
:::{ .fragment .r-fit-text }
$\Rightarrow$ *bring the community* to the higher standards
:::
## The Rise of the Pragmatic { auto-animate=true auto-animate-easing="ease-in-out }
[distill.pub](https://distill.pub)’s goals were right, but they outpaced themselves in terms of development complexity.
- **Computo** is a fresh start with a pragmatic approach
- leverage what the scientific community is already using (Rmarkdown, Jupyter notebooks, etc.)
:::{ data-id="where-computo-stands" }
![](figures/where-computo-stands1.svg)
:::
:::::
## The Rise of the Pragmatic { auto-animate=true auto-animate-easing="ease-in-out }
[distill.pub](https://distill.pub)’s goals were right, but they outpaced themselves in terms of development complexity.
- **Computo** is a fresh start with a pragmatic approach
- leverage what the scientific community is already using (Rmarkdown, Jupyter notebooks, etc.)
:::{ data-id="where-computo-stands" }
![](figures/where-computo-stands2.svg)
:::
## Origin of Computo (\~ 2020s)
[French Statistical Society](https://www.sfds.asso.fr/) appoints a "publication" committee (led by Julien then Pierre) to develop a new journal
::::{layout-ncol="2"}
:::{.callout-note .fragment}
### Assessment
:::{.incremental .no-bullets}
- 😔 Multiplication of "traditional" journals...
- 😔 No valorization of "negative" results
- 😥 No or not enough valorization of source codes and case studies
- 😱 ↘ of publication quality and time dedicated to each article (on author or reviewer sides) [@hanson2023]
- 😱 Issue with *scientific* reproducibility (analyses, experiments) [@ioannidis2005; @steen2011; @allison2016; @bastian2016; @whitfield2021; @hernandez2023]
:::
:::
::: {.callout-tip .fragment}
### Point of view
- Need for renewal regarding scientific research implementation
- Need for higher standards regarding result publications
:::
::::
:::{.fragment layout-align="center" .r-fit-text}
⇝ Emergence of "Computo" idea
:::
## Philosophy
::: callout-note
### Scientific perimeter
Promote contribution in **statistics** and **machine learning** that provide insight into which models or methods are more appropriate to address a specific scientific question
:::
::: callout-tip
### Open access
::: columns
::: {.column width="90%"}
- ["Diamond" open access](https://en.wikipedia.org/wiki/Open_access#Diamond/platinum_OA) (free to publish and free to read, possible to reuse)
- 🅭 🅯 Content published under [CC-BY](https://creativecommons.org/licenses/by/4.0/) license (attribution, share, adapt)
- Reviews and discussions available after acceptance for publication (anonymous reviews)
⇝ In accordance with [Budapest Open Access Initiative (BOAI)](https://www.budapestopenaccessinitiative.org/) and [Plan S](https://www.coalition-s.org/addendum-to-the-coalition-s-guidance-on-the-implementation-of-plan-s/principles-and-implementation/)
:::
::: {.column width="10%"}
![](img/open_access_logo.png){width="70"}
:::
:::
:::
::: callout-important
### Reproducible
- Numerical (statistical) reproducibility is a necessary condition
- Source code and data should be available, at least partly executed and fully executable
:::
## Note on reproducible research [@desquilbet2019; @hejblum2020; @the_turing_way2022]
#### Why reproduce scientific results?
- To strengthen their credibility
- To check for errors (everyone makes errors at some point!!!)
- To build new research upon them (science is incremental)
#### Issues?
- Reproduce numerical scientific results is often difficult (technology/environment evolution, source code/environment configuration/software partially available or not available)
- Waste of time and resources to reproduce existing non-reproducible results
#### Reproducible research?
- For others but also **for your future self**
- Improve result credibility
- Facilitate future research works
## Setup
Official launch at the end of 2021
<center>[![](img/computo_website.png){height="280px"}](https://computo.sfds.asso.fr) [![](img/computo_github-group.png){height="280px"}](https://github.com/computorg/)</center>
### "Economical" model
- A few tenacious people...
- Free/Open-source community tools (Pandoc, Quarto, Git forge)
- Institutional support (INRAE, INRIA, CNRS, SFdS)
## Functioning
::: columns
::: {.column width="65%"}
### Writing system
Notebook and literate programming</br><small>text (markdown) + math ($\LaTeX$) + code (Python/R/Julia), references (bib$\TeX$)</small>
### Publication system
Environment management, Compilation, Multi-format publication (pdf, html)<br><small>Continuous integration/Continuous deployment (CI/CD)</small>
### Reviewing system
- Anonymous exchange published after acceptance
- Reviewer pool (you can join)
- \[*Ongoing switch from Scholastica to Open review*\]
:::
::: {.column width="35%"}
#### Solutions/Prototype
Reproducible articles and computations
[![](img/quarto.png){height="40px"}](https://quarto.org)
Automatic editorial reproducibility
[![](img/github_actions.png){height="80px"}](https://github.com/features/actions)
Scientific validation
[![](img/openreview.png){height="80px"}](https://openreview.net/)
:::
:::
## Note on literate programming
<br>
- Literate programming [@knuth1984]: notebook including text and code
- Markup formatting language: e.g. [`markdown`](https://fr.wikipedia.org/wiki/Markdown)
- Separate content from rendering (≠ ["what you see is what you get"](https://en.wikipedia.org/wiki/WYSIWYG) editors)
- Rendering includes text, code and results (from code computations)
<br>
````{markdown}
---
title: "My article"
---
We compute 1+1:
```{{r}}
1+1
```
````
## Note on quarto
<br>
::: r-stack
[![](img/quarto.png){height="80px"}](https://quarto.org) <https://quarto.org>
:::
<br>
- Generalization of [`Rmarkdown`](https://pkgs.rstudio.com/rmarkdown/)
- Relying on top community tools like universal document converter [`Pandoc`](https://pandoc.org/)
- Developed and supported by RStudio/Posit
- Native support of complex documents (website, articles, books) and multiple languages for computations (R, Python, Julia)
- Management of references, citations, figures, tables, metadata, etc.
## Note on [continuous integration](https://en.wikipedia.org/wiki/Continuous_integration)
- Implementation in git forges (e.g. [github actions](https://github.com/features/actions) or [gitlab CI/CD](https://about.gitlab.com/topics/ci-cd/))
- Triggered by commits
- Automatic tests
- Automatic deployment: package/software publication, website
[![](img/continuous_integration.jpg){width="600px" fig-align="center"}](https://en.wikipedia.org/wiki/File:Continuous_Integration.jpg)
::: r-stack
<small>Credit: Pratik89Roy [CC-BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en) from [Wikimedia](https://en.wikipedia.org/wiki/File:Continuous_Integration.jpg)</small>
:::
## Tools for authors
::: columns
::: {.column width="50%"}
#### Document model
[`quarto` Computo extension](https://computorg.github.io/computo-quarto-extension/) [![](img/computo_repo_quarto_extension.png){height="300px"}](https://github.com/computorg/computo-quarto-extension)
:::
::: {.column width="50%"}
#### Document template
[Git `template` repository](https://computo.sfds.asso.fr/repos/)
with template notebook document + doc + pre-configured compilation and publication setup
[![](img/computo_template_repositories.png)](https://computo.sfds.asso.fr/repos/)
:::
:::
### Locally
::: columns
::: {.column width="55%"}
- Text editor/IDE (VS Code, Rstudio, NeoVim, etc.)
- Quarto (compilation)
:::
::: {.column width="45%"}
- Julia / R / Python code + computations
- git versioning system
:::
:::
## Author point of view (1/3)
<br>
### Step 0: setup a git repository for your article
::: columns
::: {.column width="58%"}
Startup from a template repository ([R](https://github.com/computorg/template-computo-R), [Python](https://github.com/computorg/template-computo-python), [Julia](https://github.com/computorg/template-computo-julia))
::: callout-tip
You can host your git repository on [**github**](https://github.com) and soon an any **gitlab** forge[^1].
:::
:::
::: {.column width="42%"}
[![](img/computo_use_template.png)](https://github.com/computorg/template-computo-R)
:::
:::
[^1]: with CI/CD support
<br>
### Step 1: write your article
Let's go, locally (same spirit as Jupyter/Rmarkdown notebooks)
## Author point of view (2/3)
### Step 2: configure the environment (dependencies management)
::: panel-tabset
#### Example in Python
::: columns
::: {.column width="75%"}
`venv`: use a virtual environment and generate the `requirements.txt` file
:::
::: {.column width="25%"}
``` yaml
# requirements.txt
jupyter
matplotlib
numpy
```
:::
:::
#### Example in R
::: columns
::: {.column width="58%"}
`renv`: generate the `renv.lock` file
:::
::: {.column width="42%"}
``` r
renv::init()
renv::install("ggplot2")
# or equivalently install.packages("ggplot2")
renv::snapshot()
```
:::
:::
#### Example in Julia
::: columns
::: {.column width="75%"}
`Pkg`: native `Julia` package manager (with generated `Project.toml` et `Manifest.toml` files)
:::
::: {.column width="25%"}
``` julia
add Plots
add IJulia
```
:::
:::
:::
<small>Configuration file versionned and used during CI compilation/publication action</small>
### Step 3: (re)production
A `git push` command will trigger your article compilation (including computations) and publication as a [*github* page](https://pages.github.com)[^2]
[^2]: or as a *gitlab* page when *gitlab* will be supported (soon)
<small>See the preconfigured `.github/workflows/build.yml` file for the *github* action configuration[^3]</small>
[^3]: and soon the `.gitlab-ci.yml` file for the *gitlab* CI/CD configuration
## Author point of view (3/3)
::: columns
::: {.column width="70%"}
<br>
### Step 4: submit your article
If the CI process succeeds, both HTML and PDF versions are published on the [*github-page*](https://computorg.github.io/template-computo-R/) associated to the repository
<br/><br/>
#### <s>Scholastica</s> Open review
<https://openreview.net/group?id=Computo>
Submit:
- your article PDF (scientific content review)
- your git repository (source code and reproducibility review)
:::
::: {.column width="30%"}
[![](img/computo_template_rendered.png)](https://github.com/computorg/template-computo-python/)
[![](img/computo_openreview.png)](https://openreview.net/group?id=Computo)
:::
:::
## Editor point of view
::: columns
::: {.column width="70%"}
After a "traditionnal" review process, a 3 step procedure:
1. Acceptance
2. Pre-production
3. Publication in Computo (with a DOI)
including
- Copy of the author git repository to <https://github.com/computorg/>
- Final version formatting
- Review report publication
- Registration in the journal bibliographic data base
- Copy of the repository to [Software Heritage](https://archive.softwareheritage.org/browse/search/?q=computorg%2Fpublished&with_visit=true&with_content=true) for archiving
- Publication of the article on the journal website
:::
::: {.column width="30%"}
[Task-list = github issue](https://github.com/computorg/published-paper-tsne/issues/5)
[![](img/computo_template_issue_editor.png)](https://github.com/computorg/published-paper-tsne/issues/5)
:::
:::
## 2year and a half report
<br/>
🥲 Fully operational + doi, ISSN
🙂 7 published articles articles, 3 in preproduction, 6 under review (more details [here](https://computo.sfds.asso.fr/publications/))
🙂 x presentations (Montpellier, Toronto, Humastica, Grenoble, RR2023, etc.)
🙂 [French reproducible research network](https://www.recherche-reproductible.fr/)
🤯 Difficult to find reviewers
🤔 Institutional support?
🤔 Changing practices in the scientific community?
<br/>
## Discussion
### About several choices
- [`quarto`](https://quarto.org/): dynamic, agnostic language, [FOSS](https://en.wikipedia.org/wiki/Free_and_open-source_software)[^4], community-based ([`pandoc`](https://pandoc.org/)), Rstudio/Posit support
- [`github`](https://github.com): dynamic, large user community but not institutional and limited computing resources
[^4]: "free and open-source"
### Comparison/inspiration
- [Peer Community-In (PCI)](https://peercommunityin.org/)[^5], [EpiSciences](https://www.episciences.org/): different philosophy and/or functioning
- <https://rescience.github.io/>: "remake" published articles
- <https://distill.pub> (discontinued): technically more complicated and only ML/AI-oriented
[^5]: Computo is a [PCI-friendly journal](https://peercommunityin.org/pci-friendly-journals/)
## Perspectives
<br>
- Provision of computing resources (to be able to run all computations)
- Full *gitlab* support (CI/CD, docker, registry, etc.)
- Switch to a french institutional gitlab forge?
- Improve long-term reproducibility stack ([docker](https://www.docker.com/) container, [GUIX](https://guix.gnu.org) fully reproducible environment, only at the end of the publication process, )
<br>
### How to help?
::: columns
::: {.column width="50%"}
- By submitting[^6] your work!
:::
::: {.column width="50%"}
- By becoming reviewer[^7]
:::
:::
[^6]: <https://computo.sfds.asso.fr/submit/>
[^7]: contact us at [computo\@sfds.asso.fr](mailto:[email protected]){.email}
## Regarding the logo
<br>
![](img/computo_concept.png){width="600px" fig-align="center"}
## References {.scrollable .smaller}
::: {#refs}
:::
# Reproducibility considerations
![Scientific and editorial reproducibility](figures/reproducible-sequence-orig.svg)
## Two-fold reproducibility
The global scientific workflow of a reproducible process for a Computo may be split into two types of steps:
**External and Editorial**
## External
External
: Process to obtain (intermediate) results utside of the notebook environment, for a list of reasons (non-exclusive to each other):
- the process is too long to be conducted in a notebook
- the data to be processed is too big to be handled directly in the notebook
- it needs a specific environment (e.g. a cluster, with gpus, etc.)
- it needs to involve specific languages (e.g. C, C++, Fortran, etc.) or build tools (e.g. make, cmake, etc.)
<!-- ## Reproducibility considerations (3)
In our context, **External** is “Computational reproducibility”, where the reproducibility is achieved by providing the code and the environment to run it, but not the results themselves. -->
## Editorial
Editorial
: notebook rendering with the results of the external process
:::{.callout-note title="Requirement"}
If the notebook contains *everything* to produce the final document
$\Rightarrow$ “Direct reproducibility” in the sense that the notebook is the only thing needed to reproduce the results.
Ultimately, the workflow must end with a direct reproducibility step which concludes the whole process.
:::
## Reproducibility considerations (5)
Data transfer
: When applicable, the switch from external to editorial reproducibility is done with a “data transfer” step,
data produced by the external process $\Rightarrow$ transferred to the notebook environment.
:::{.callout-warning title="Requirement"}
Not only the intermediate results are provided, but also **the code to transfer it in the notebook environment.**
There are a variety of software solutions to do so.
:::
## Examples of data transfer solutions
### Intermediate results storage
- Python: [`joblib.Memory`](https://joblib.readthedocs.io/en/latest/memory.html), caching mechanism for python functions, save the results of a function call to disk, and load it back later.
- R : `.RData` file format, can be loaded back in R with the `load()` function.
- If results are small enough, storing them in a text file (e.g. `.csv`, `.tsv`, `.json`, etc.) is also a solution.
### Transfer of the results to the notebook environment
- (`.joblib` directory or `.Rdata` file) could be committed to the git repository, and directly loaded in the notebook environment.
- Alternative, centralize input data (when large enough) and intermediate results on a shared scientific provider (we recommend [Zenodo](https://zenodo.org/) for this purpose), and download them in the notebook environment.
# Workshop
## Quarto
In this workshop, we will learn how to use quarto to create a document that includes code, data, and narrative text. We will also learn how to make the CI (continuous integration) work.
## The main pipeline, step by step
- Template installation
- computing environment: renv, conda, etc.
- Authoring in the qmd
- rendering locally
- pushing to github
## Getting started
To get started you will need to clone the mock template for this workshop. The template is available at
[https://github.com/computorg/template-jds2024](https://github.com/computorg/template-jds2024)
:::{ .content-hidden unless-format="revealjs" }
{{< qrcode https://github.com/computorg/template-jds2024 >}}
:::
## Mock repository
https://github.com/computorg/template-jds2024
:::{ .content-hidden unless-format="revealjs" }
{{< qrcode https://github.com/computorg/template-jds2024 >}}
:::
## Creating a repo from a template
1. On GitHub.com, navigate to the main page of the repository.
2. Above the file list, click Use this template.
3. Select Create a new repository.
4. Select `Include all branches`.
## Language version
Make a `git clone` of the repository you just templated and open it in your favorite IDE.
:::{ layout-ncol="2"}
### Python version
Rename the `published-paper-tsne-python.qmd` to `published-paper-tsne.qmd`
### R version
Rename the `published-paper-tsne-R.qmd` to `published-paper-tsne.qmd`
:::
# Conclusion