-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassim_backfill_co_s.py
589 lines (496 loc) · 21.1 KB
/
assim_backfill_co_s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#!/usr/bin/env python
# coding: utf-8
import geopandas as gpd
import pandas as pd
import numpy as np
from datetime import datetime, timedelta, date
import requests
import json
from rasterstats import point_query
from shapely import geometry as sgeom
import ulmo
from collections import OrderedDict
#########################################################################
############################ USER INPUTS ################################
#########################################################################
# NOTE: to runn assim, set irun_data_assim = 1 in .par file
# DOMAIN
# choose the modeling domain
domain = 'CO_S'
# PATHS
dataPath = '/nfs/attic/dfh/Aragon2/CSOdmn/'+domain+'/'
#path to dem .tif
dem_path = dataPath + 'DEM_'+domain+'.tif'
#path to landcover .tif
lc_path = dataPath + 'NLCD2016_'+domain+'.tif'
#path to SnowModel
SMpath = '/nfs/depot/cce_u1/hill/dfh/op_snowmodel/co_s_snowmodel/'
# TIME
# choose if want to set 'manual' or 'auto' date
date_flag = 'manual'
# If you choose 'manual' set your dates below
st_dt = '2021-10-01'
ed_dt = '2022-04-24'
# ASSIM OPTIONS
# select the data source to be assimilated
# can be set to 'none','cso', 'both' or 'snotel'
assim_mod = 'both'
print(assim_mod)
#########################################################################
# Date setup function
def set_dates(st_dt,ed_dt,date_flag):
if date_flag == 'auto':
# ###automatically select date based on today's date
hoy = date.today()
antes = timedelta(days = 3)
#end date 3 days before today's date
fecha = hoy - antes
eddt = fecha.strftime("%Y-%m-%d")
#whole water year
if (hoy.month == 10) & (hoy.day == 3):
eddt = fecha.strftime("%Y-%m-%d")
stdt = str(hoy.year - 1)+'-10-01'
#start dates
elif fecha.month <10:
stdt = str(fecha.year - 1)+'-10-01'
else:
stdt = str(fecha.year)+'-10-01'
elif date_flag == 'manual':
stdt = st_dt
eddt = ed_dt
return stdt, eddt
stdt, eddt = set_dates(st_dt,ed_dt,date_flag)
print(stdt, eddt)
#########################################################################
# CSO Functions
#########################################################################
# Function to get SWE from CSO Hs
def swe_calc(gdf):
#convert snow depth to mm to input into density function
H = gdf.depth.values*10
#Get temp info at each point
TD = np.array([point_query([val], '/nfs/attic/dfh/data/depth2swe/td_final.txt')[0] for val in gdf.geometry])
#Get pr info at each point
PPTWT = np.array([point_query([val], '/nfs/attic/dfh/data/depth2swe/ppt_wt_final.txt')[0] for val in gdf.geometry])
#Determine day of year
dates = pd.to_datetime(gdf.timestamp, format='%Y-%m-%dT%H:%M:%S').dt.date.values
DOY = [date.toordinal(date(dts.year,dts.month,dts.day))-date.toordinal(date(dts.year,9,30)) for dts in dates]
DOY = np.array([doy + 365 if doy < 0 else doy for doy in DOY])
#Apply regression equation
a = [0.0533,0.948,0.1701,-0.1314,0.2922] #accumulation phase
b = [0.0481,1.0395,0.1699,-0.0461,0.1804]; #ablation phase
SWE = a[0]*H**a[1]*PPTWT**a[2]*TD**a[3]*DOY**a[4]*(-np.tanh(.01*\
(DOY-180))+1)/2 + b[0]*H**b[1]*PPTWT**b[2]*TD**b[3]*DOY**b[4]*\
(np.tanh(.01*(DOY-180))+1)/2;
#convert swe to m to input into SM
gdf['swe'] = SWE/1000
gdf['doy'] = DOY
gdf['H'] = H
return gdf
# Function to build geodataframe of CSO point observations
def get_cso(st, ed, domain):
'''
st = start date 'yyyy-mm-dd'
ed = end date 'yyyy-mm-dd'
domain = string label of defined CSO domain
'''
#path to CSO domains
domains_resp = requests.get("https://raw.githubusercontent.com/snowmodel-tools/preprocess_python/master/CSO_domains.json")
domains = domains_resp.json()
Bbox = domains[domain]['Bbox']
stn_proj = domains[domain]['stn_proj']
mod_proj = domains[domain]['mod_proj']
#Issue CSO API observations request and load the results into a GeoDataFrame
params = {
"bbox": f"{Bbox['lonmin']},{Bbox['latmax']},{Bbox['lonmax']},{Bbox['latmin']}",
"start_date": st,
"end_date": ed,
"format": "geojson",
"limit": 5000,
}
csodata_resp = requests.get("https://api.communitysnowobs.org/observations", params=params)
csodatajson = csodata_resp.json()
#turn into geodataframe
gdf = gpd.GeoDataFrame.from_features(csodatajson, crs=stn_proj)
mask = (gdf['timestamp'] >= st) & (gdf['timestamp'] <= ed)
gdf = gdf.loc[mask]
gdf=gdf.reset_index(drop=True)
print('Total number of CSO in domain = ',len(gdf))
#ingdf = extract_meta(gdf,domain,dem_path,lc_path)
ingdf = swe_calc(gdf)
ingdf_proj = ingdf.to_crs(mod_proj)
ingdf['dt'] = pd.to_datetime(ingdf['timestamp'], format='%Y-%m-%dT%H:%M:%S').dt.date
ingdf['Y'] = pd.DatetimeIndex(ingdf['dt']).year
ingdf['M'] = pd.DatetimeIndex(ingdf['dt']).month
ingdf['D'] = pd.DatetimeIndex(ingdf['dt']).day
ingdf["x"] = ingdf_proj.geometry.x
ingdf["y"] = ingdf_proj.geometry.y
return ingdf
# QA/QC function for CSO data
def qaqc_iqr(csodf):
print('Performing qa/qc on CSO data using IQR method')
clim_dir = '/nfs/attic/dfh/data/snodas/snodas_tif/clim/'
iqr_flag = []
for i in range(len(csodf)):
# get cso snow depth
csohs = csodf.H[i]
# get date
dates = pd.to_datetime(csodf.timestamp[i], format='%Y-%m-%dT%H:%M:%S')
# define path names for 1st and 3rd doy quantiles
q1_Fname = clim_dir+dates.strftime("%m")+dates.strftime("%d")+'1036q1.tif'
q3_Fname = clim_dir+dates.strftime("%m")+dates.strftime("%d")+'1036q3.tif'
q1 = point_query([csodf.geometry[i]], q1_Fname)[0]
q3 = point_query([csodf.geometry[i]], q3_Fname)[0]
IQR = q3-q1
# False = outlier
iqr_flag.append((csohs > (q1-1.5*IQR)) & (csohs < (q3+1.5*IQR)))
csodf['iqr_flag'] = iqr_flag
csodf_clean = csodf.loc[csodf['iqr_flag'] == True]
csodf_clean = csodf_clean.reset_index(drop=True)
return csodf_clean
#########################################################################
# SNOTEL Functions
#########################################################################
# functions to get SNOTEL stations as geodataframe
def sites_asgdf(ulmo_getsites, stn_proj):
""" Convert ulmo.cuahsi.wof.get_sites response into a point GeoDataframe
"""
# Note: Found one SNOTEL site that was missing the location key
sites_df = pd.DataFrame.from_records([
OrderedDict(code=s['code'],
longitude=float(s['location']['longitude']),
latitude=float(s['location']['latitude']),
name=s['name'],
elevation_m=s['elevation_m'])
for _,s in ulmo_getsites.items()
if 'location' in s
])
sites_gdf = gpd.GeoDataFrame(
sites_df,
geometry=gpd.points_from_xy(sites_df['longitude'], sites_df['latitude']),
crs=stn_proj
)
return sites_gdf
def get_snotel_stns(domain):
#path to CSO domains
domains_resp = requests.get("https://raw.githubusercontent.com/snowmodel-tools/preprocess_python/master/CSO_domains.json")
domains = domains_resp.json()
#Snotel bounding box
Bbox = domains[domain]['Bbox']
# Snotel projection
stn_proj = domains[domain]['stn_proj']
# model projection
mod_proj = domains[domain]['mod_proj']
# Convert the bounding box dictionary to a shapely Polygon geometry using sgeom.box
box_sgeom = sgeom.box(Bbox['lonmin'], Bbox['latmin'], Bbox['lonmax'], Bbox['latmax'])
box_gdf = gpd.GeoDataFrame(geometry=[box_sgeom], crs=stn_proj)
# WaterML/WOF WSDL endpoint url
if domain == 'NH':
wsdlurl = "https://hydroportal.cuahsi.org/Scan/cuahsi_1_1.asmx?WSDL"
else:
wsdlurl = "https://hydroportal.cuahsi.org/Snotel/cuahsi_1_1.asmx?WSDL"
# get dictionary of snotel sites
sites = ulmo.cuahsi.wof.get_sites(wsdlurl,user_cache=True)
#turn sites to geodataframe
snotel_gdf = sites_asgdf(sites,stn_proj)
#clip snotel sites to domain bounding box
gdf = gpd.sjoin(snotel_gdf, box_gdf, how="inner")
gdf.drop(columns='index_right', inplace=True)
gdf.reset_index(drop=True, inplace=True)
#add columns with projected coordinates
CSO_proj = gdf.to_crs(mod_proj)
gdf['easting'] = CSO_proj.geometry.x
gdf['northing'] = CSO_proj.geometry.y
return gdf
def fetch(sitecode, variablecode, domain,start_date, end_date):
print(sitecode, variablecode, domain,start_date, end_date)
values_df = None
# WaterML/WOF WSDL endpoint url
if domain == 'NH':
wsdlurl = "https://hydroportal.cuahsi.org/Scan/cuahsi_1_1.asmx?WSDL"
network = 'SCAN:'
else:
wsdlurl = "https://hydroportal.cuahsi.org/Snotel/cuahsi_1_1.asmx?WSDL"
network = 'SNOTEL:'
try:
#Request data from the server
site_values = ulmo.cuahsi.wof.get_values(
wsdlurl, network+sitecode, variablecode, start=start_date, end=end_date
)
#Convert to a Pandas DataFrame
values_df = pd.DataFrame.from_dict(site_values['values'])
#Parse the datetime values to Pandas Timestamp objects
values_df['datetime'] = pd.to_datetime(values_df['datetime'])
#Set the DataFrame index to the Timestamps
values_df.set_index('datetime', inplace=True)
#Convert values to float and replace -9999 nodata values with NaN
values_df['value'] = pd.to_numeric(values_df['value']).replace(-9999, np.nan)
#Remove any records flagged with lower quality
values_df = values_df[values_df['quality_control_level_code'] == '1']
except:
print("Unable to fetch %s" % variablecode)
return values_df
# returns daily timeseries of snotel variables
# https://www.wcc.nrcs.usda.gov/web_service/AWDB_Web_Service_Reference.htm#commonlyUsedElementCodes
# 'WTEQ': swe [in]
# 'SNWD': snow depth [in]
# 'PRCP': precipitation increment [in]
# 'PREC': precipitation accumulation [in]
# 'TAVG': average air temp [F]
# 'TMIN': minimum air temp [F]
# 'TMAX': maximum air temp [F]
# 'TOBS': observered air temp [F]
def get_snotel_data(gdf,sddt, eddt,var,domain,units='metric'):
'''
gdf - pandas geodataframe of SNOTEL sites
st_dt - start date string 'yyyy-mm-dd'
ed_dt - end date string 'yyyy-mm-dd'
var - snotel variable of interest
units - 'metric' (default) or 'imperial'
'''
stn_data = pd.DataFrame(index=pd.date_range(start=stdt, end=eddt))
if domain == 'NH':
network = 'SCAN:'
else:
network = 'SNOTEL:'
for sitecode in gdf.code:
try:
data = fetch(sitecode,network+var+'_D', domain, start_date=stdt, end_date=eddt)
#check for nan values
if len(data.value[np.isnan(data.value)]) > 0:
#check if more than 10% of data is missing
if len(data.value[np.isnan(data.value)])/len(data) > .02:
print('More than 2% of days missing')
gdf.drop(gdf.loc[gdf['code']==sitecode].index, inplace=True)
continue
stn_data[sitecode] = data.value
except:
gdf.drop(gdf.loc[gdf['code']==sitecode].index, inplace=True)
gdf.reset_index(drop=True, inplace=True)
if units == 'metric':
if (var == 'WTEQ') |(var == 'SNWD') |(var == 'PRCP') |(var == 'PREC'):
#convert SNOTEL units[in] to [m]
for sitecode in gdf.code:
stn_data[sitecode] = 0.0254 * stn_data[sitecode]
elif (var == 'TAVG') |(var == 'TMIN') |(var == 'TMAX') |(var == 'TOBS'):
#convert SNOTEL units[F] to [C]
for sitecode in gdf.code:
stn_data[sitecode] = (stn_data[sitecode] - 32) * 5/9
return gdf, stn_data
#########################################################################
# Functions to format CSO & SNOTEL data for SM
#########################################################################
def make_SMassim_file(CSOdata,outFpath):
'''
CSOdata = dataframe with CSO data
outFpath = output path to formated assim data for SM
'''
print('Generating assim file')
f= open(outFpath,"w+")
tot_obs=len(CSOdata)
uq_day = np.unique(CSOdata.dt)
num_days = len(uq_day)
f.write('{:02.0f}\n'.format(num_days))
for j in range(len(uq_day)):
obs = CSOdata[CSOdata['dt']==uq_day[j]]
d=CSOdata.D[CSOdata['dt']==uq_day[j]].values
m=CSOdata.M[CSOdata['dt']==uq_day[j]].values
y=CSOdata.Y[CSOdata['dt']==uq_day[j]].values
date = str(y[0])+' '+str(m[0])+' '+str(d[0])
obs_count = str(len(obs))
f.write(date+' \n')
f.write(obs_count+' \n')
for k in range(len(obs)):
ids = 100+k
x= obs.x[obs.index[k]]
y=obs.y[obs.index[k]]
swe=obs.swe[obs.index[k]]
f.write('{:3.0f}\t'.format(ids)+'{:10.0f}\t'.format(x)+'{:10.0f}\t'.format(y)+'{:3.2f}\n'.format(swe))
f.close()
def make_SMassim_file_snotel(STswe,STmeta,outFpath):
'''
STmeta = dataframe with SNOTEL sites
STswe = dataframe with SWE data
outFpath = output path to formated assim data for SM
'''
print('Generating assim file')
f= open(outFpath,"w+")
tot_obs=np.shape(STswe)[0]*np.shape(STswe)[1]
uq_day = np.shape(STswe)[0]
stn = list(STswe.columns)
f.write('{:02.0f}\n'.format(uq_day))
for j in range(uq_day):
d=STswe.index[j].day
m=STswe.index[j].month
y=STswe.index[j].year
date = str(y)+' '+str(m)+' '+str(d)
stn_count = np.shape(STswe)[1]
f.write(date+' \n')
f.write(str(stn_count)+' \n')
ids = 100
for k in stn:
ids = ids + 1
x = STmeta.easting.values[STmeta.code.values == k][0]
y = STmeta.northing.values[STmeta.code.values == k][0]
swe = STswe[k][j]
f.write('{:3.0f}\t'.format(ids)+'{:10.0f}\t'.format(x)+'{:10.0f}\t'.format(y)+'{:3.2f}\n'.format(swe))
f.close()
def make_SMassim_file_both(STswe,STmeta,CSOdata,outFpath):
'''
STmeta = dataframe with SNOTEL sites
STswe = dataframe with SWE data
CSOdata = dataframe with CSO data
outFpath = output path to formated assim data for SM
'''
print('Generating assim file')
f= open(outFpath,"w+")
#determine number of days with observations to assimilate
if STswe.shape[1]>0:
uq_day = np.unique(np.concatenate((STswe.index.date,CSOdata.dt.values)))
f.write('{:02.0f}\n'.format(len(uq_day)))
else:
uq_day = np.unique(CSOdata.dt.values)
f.write('{:02.0f}\n'.format(len(uq_day)))
# determine snotel stations
stn = list(STswe.columns)
# ids for CSO observations - outside of loop so each observation is unique
IDS = 500
#add assimilation observations to output file
for i in range(len(uq_day)):
SThoy = STswe[STswe.index.date == uq_day[i]]
CSOhoy = CSOdata[CSOdata.dt.values == uq_day[i]]
d=uq_day[i].day
m=uq_day[i].month
y=uq_day[i].year
date = str(y)+' '+str(m)+' '+str(d)
if len(SThoy)>0:
stn_count = len(stn) + len(CSOhoy)
else:
stn_count = len(CSOhoy)
if stn_count > 0:
f.write(date+' \n')
f.write(str(stn_count)+' \n')
#go through snotel stations for that day
ids = 100
if len(SThoy) > 0:
for k in stn:
ids = ids + 1
x = STmeta.easting.values[STmeta.code.values == k][0]
y = STmeta.northing.values[STmeta.code.values == k][0]
swe = SThoy[k].values[0]
f.write('{:3.0f}\t'.format(ids)+'{:10.0f}\t'.format(x)+'{:10.0f}\t'.format(y)+'{:3.2f}\n'.format(swe))
#go through cso obs for that day
if len(CSOhoy) > 0:
for c in range(len(CSOhoy)):
IDS = IDS + 1
x= CSOhoy.x[CSOhoy.index[c]]
y=CSOhoy.y[CSOhoy.index[c]]
swe=CSOhoy.swe[CSOhoy.index[c]]
f.write('{:3.0f}\t'.format(IDS)+'{:10.0f}\t'.format(x)+'{:10.0f}\t'.format(y)+'{:3.2f}\n'.format(swe))
f.close()
return len(uq_day)
#########################################################################
# Functions to edit SM files
#########################################################################
# function to edit SnowModel Files other than .par
# for assim - have to adjust .inc file to specify # of obs being assimilated
def replace_line(file_name, line_num, text):
'''
file_name = file to edit
line_num = line number in file to edit
text = nex text to put in
'''
lines = open(file_name, 'r').readlines()
lines[line_num] = text
out = open(file_name, 'w')
out.writelines(lines)
out.close()
#edit par file for correct number of timesteps
parFile = SMpath + 'snowmodel.par'
replace_line(parFile,7,str(datetime.strptime(stdt,'%Y-%m-%d').year) +' !iyear_init - start year\n')
replace_line(parFile,8,str(datetime.strptime(stdt,'%Y-%m-%d').month) +' !imonth_init - start month\n')
replace_line(parFile,9,str(datetime.strptime(stdt,'%Y-%m-%d').day) +' !iday_init - start day\n')
value = str((datetime.strptime(eddt,'%Y-%m-%d')-datetime.strptime(stdt,'%Y-%m-%d')).days*4+4)
replace_line(parFile,11,value +' !max_iter - number of model time steps\n')
# Run SM with CSO assim
outFpath = SMpath+'swe_assim/swe_obs_test.dat'
codepath = SMpath+'/code/'
incFile = SMpath+'code/snowmodel.inc'
if assim_mod == 'none':
print('Executing SnowModel without assimilation')
replace_line(parFile,35,'0 !irun_data_assim - 0 for straight run; 1 for assim run\n')
#compile SM
get_ipython().run_line_magic('cd', '$codepath')
get_ipython().system(' ./compile_snowmodel.script')
#run snowmodel
get_ipython().run_line_magic('cd', '$SMpath')
get_ipython().system(' ./snowmodel')
elif assim_mod == 'cso':
CSOgdf = get_cso(stdt, eddt, domain)
if len(CSOgdf) < 1:
print('Executing SnowModel without assimilation')
replace_line(parFile,35,'0 !irun_data_assim - 0 for straight run; 1 for assim run\n')
else:
print('Creating assim input file using CSO observations')
replace_line(parFile,35,'1 !irun_data_assim - 0 for straight run; 1 for assim run\n')
CSOgdf_clean = qaqc_iqr(CSOgdf)
make_SMassim_file(CSOgdf_clean,outFpath)
# #edit .inc file
replace_line(incFile, 30, ' parameter (max_obs_dates='+str(len(CSOgdf_clean)+1)+')\n')
#compile SM
get_ipython().run_line_magic('cd', '$codepath')
get_ipython().system(' ./compile_snowmodel.script')
#run snowmodel
get_ipython().run_line_magic('cd', '$SMpath')
get_ipython().system(' ./snowmodel')
elif assim_mod == 'snotel':
print('Creating assim input file using SNOTEL observations')
replace_line(parFile,35,'1 !irun_data_assim - 0 for straight run; 1 for assim run\n')
snotel_gdf = get_snotel_stns(domain)
SNOTELgdf, swe = get_snotel_data(snotel_gdf,stdt,eddt,'WTEQ',domain)
delta = 5
sample = swe.iloc[::delta,:]
make_SMassim_file_snotel(sample,SNOTELgdf,outFpath)
#edit .inc file
replace_line(incFile, 30, ' parameter (max_obs_dates='+str(len(sample)+1)+')\n')
#compile SM
get_ipython().run_line_magic('cd', '$codepath')
get_ipython().system(' ./compile_snowmodel.script')
#run snowmodel
get_ipython().run_line_magic('cd', '$SMpath')
get_ipython().system(' ./snowmodel')
elif assim_mod == 'both':
print('Creating assim input file using CSO & SNOTEL observations')
replace_line(parFile,35,'1 !irun_data_assim - 0 for straight run; 1 for assim run\n')
CSOgdf = get_cso(stdt, eddt, domain)
# set delta time
delta = 5
if len(CSOgdf)>=1:
CSOgdf_clean = qaqc_iqr(CSOgdf)
CSOdata = CSOgdf_clean.sort_values(by='dt',ascending=True)
CSOdata = CSOdata.reset_index(drop=True)
newCSO = CSOdata
snotel_gdf = get_snotel_stns(domain)
SNOTELgdf, STswe = get_snotel_data(snotel_gdf,stdt,eddt,'WTEQ',domain)
newST = SNOTELgdf
newSTswe = STswe
num_obs = make_SMassim_file_both(newSTswe,newST,newCSO,outFpath)
#edit .inc file
replace_line(incFile, 30, ' parameter (max_obs_dates='+str(num_obs+1)+')\n')
else:
print('No CSO observations. Creating assim input file using SNOTEL observations')
snotel_gdf = get_snotel_stns(domain)
SNOTELgdf, STswe = get_snotel_data(snotel_gdf,stdt,eddt,'WTEQ',domain)
newST = SNOTELgdf
newSTswe = STswe
make_SMassim_file_snotel(newSTswe,newST,outFpath)
#edit .inc file
replace_line(incFile, 30, ' parameter (max_obs_dates='+str(len(newSTswe)+1)+')\n')
# #compile SM
get_ipython().run_line_magic('cd', '$codepath')
get_ipython().system(' ./compile_snowmodel.script')
#run snowmodel
get_ipython().run_line_magic('cd', '$SMpath')
get_ipython().system(' ./snowmodel')
else:
print("No valid assim mode was entered. Select 'none','cso', 'snotel' or 'both'.")