-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathbuild.py
38 lines (25 loc) · 1.35 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# %load q03_logistic_regression/build.py
# Default Imports
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from greyatomlib.logistic_regression_project.q01_outlier_removal.build import outlier_removal
from greyatomlib.logistic_regression_project.q02_data_cleaning_all.build import data_cleaning
from greyatomlib.logistic_regression_project.q02_data_cleaning_all_2.build import data_cleaning_2
loan_data = pd.read_csv('data/loan_prediction_uncleaned.csv')
loan_data = loan_data.drop('Loan_ID', 1)
loan_data = outlier_removal(loan_data)
X, y, X_train, X_test, y_train, y_test = data_cleaning(loan_data)
X_train, X_test, y_train, y_test = data_cleaning_2(X_train, X_test, y_train, y_test)
def logistic_regression(X_train, X_test, y_train, y_test):
column_transform = ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount']
stand_scale = StandardScaler()
X_train.loc[:, column_transform] = stand_scale.fit_transform(X_train.loc[:, column_transform])
X_test.loc[:, column_transform] = stand_scale.fit_transform(X_test.loc[:, column_transform])
lr = LogisticRegression(random_state=9)
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
cm = confusion_matrix(y_test,y_pred)
return cm