-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathbuild.py
32 lines (29 loc) · 1.32 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# %load q03_logistic_regression/build.py
# Default Imports
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from greyatomlib.logistic_regression_project.q01_outlier_removal.build import outlier_removal
from greyatomlib.logistic_regression_project.q02_data_cleaning_all.build import data_cleaning
from greyatomlib.logistic_regression_project.q02_data_cleaning_all_2.build import data_cleaning_2
loan_data = pd.read_csv('data/loan_prediction_uncleaned.csv')
loan_data = loan_data.drop('Loan_ID', 1)
loan_data = outlier_removal(loan_data)
X, y, X_train, X_test, y_train, y_test = data_cleaning(loan_data)
X_train, X_test, y_train, y_test = data_cleaning_2(X_train, X_test, y_train, y_test)
def logistic_regression(X_train, X_test, y_train, y_test):
#Scaling the data
scaler = StandardScaler()
StandardScaler(copy=True, with_mean=True, with_std=True)
scaler.fit(X_train)
scaler.transform(X_train)
scaler.fit(X_test)
scaler.transform(X_test)
#Logistic regression
model1=LogisticRegression(random_state=9).fit(X_train,y_train)
ypred=model1.predict(X_test)
#Confusion matrix
result=confusion_matrix(y_test, ypred)
return(result)
logistic_regression(X_train, X_test, y_train, y_test)