-
Notifications
You must be signed in to change notification settings - Fork 215
/
extract_distill_data.py
44 lines (38 loc) · 1.55 KB
/
extract_distill_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torchaudio
import sys
from pathlib import Path
from fastprogress import progress_bar, master_bar
import numpy as np
import whisper
whmodel = whisper.load_model('tiny.en')
tokenizer = whisper.tokenizer.get_tokenizer(False, language='en')
datadir = Path('/mnt/small/')
spkid = sys.argv[1]
def load(fname, newsr=24000):
x, sr = torchaudio.load(fname)
_tform = torchaudio.transforms.Resample(sr, newsr)
return _tform(x).cuda().unsqueeze(0)
# same as above but rolled into a function
def encode_semantic_logits(fname):
audio = load(fname, newsr=whisper.audio.SAMPLE_RATE)
mel = whisper.log_mel_spectrogram(audio[0,0])
init_tokens = torch.tensor([tokenizer.sot_sequence]).repeat(whisper.audio.N_FRAMES, 1).cuda()
embs = []
toks = []
for start in range(0, mel.shape[-1], whisper.audio.N_FRAMES):
sample = mel[:,start:]
with torch.no_grad():
padded = whisper.audio.pad_or_trim(sample, whisper.audio.N_FRAMES).unsqueeze(0)
emb = whmodel.encoder(padded)
tokens = whmodel.decode(padded, whisper.DecodingOptions(language='en'))[0].tokens
embs.append(emb.cpu())
toks.append(tokens)
return torch.stack(embs, axis=0), toks
outdir = Path(f'whisper-tiny-decoder-{spkid}')
outdir.mkdir(exist_ok=True)
for name in progress_bar(list((datadir/str(spkid)).rglob('*.flac'))):
embs, toks = encode_semantic_logits(name)
torch.save(embs.to(torch.float16), outdir/name.with_suffix('.whisper').name)
torch.save(toks, outdir/name.with_suffix('.tokens').name)
print()