forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
286 lines (270 loc) · 7.84 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
np.set_printoptions(threshold=np.inf, suppress=True)
import PIL.Image as Image
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
import PIL.ImageFilter as ImageFilter
COLORS = [
"GoldenRod",
"MediumTurquoise",
"GreenYellow",
"SteelBlue",
"DarkSeaGreen",
"SeaShell",
"LightGrey",
"IndianRed",
"DarkKhaki",
"LawnGreen",
"WhiteSmoke",
"Peru",
"LightCoral",
"FireBrick",
"OldLace",
"LightBlue",
"SlateGray",
"OliveDrab",
"NavajoWhite",
"PaleVioletRed",
"SpringGreen",
"AliceBlue",
"Violet",
"DeepSkyBlue",
"Red",
"MediumVioletRed",
"PaleTurquoise",
"Tomato",
"Azure",
"Yellow",
"Cornsilk",
"Aquamarine",
"CadetBlue",
"CornflowerBlue",
"DodgerBlue",
"Olive",
"Orchid",
"LemonChiffon",
"Sienna",
"OrangeRed",
"Orange",
"DarkSalmon",
"Magenta",
"Wheat",
"Lime",
"GhostWhite",
"SlateBlue",
"Aqua",
"MediumAquaMarine",
"LightSlateGrey",
"MediumSeaGreen",
"SandyBrown",
"YellowGreen",
"Plum",
"FloralWhite",
"LightPink",
"Thistle",
"DarkViolet",
"Pink",
"Crimson",
"Chocolate",
"DarkGrey",
"Ivory",
"PaleGreen",
"DarkGoldenRod",
"LavenderBlush",
"SlateGrey",
"DeepPink",
"Gold",
"Cyan",
"LightSteelBlue",
"MediumPurple",
"ForestGreen",
"DarkOrange",
"Tan",
"Salmon",
"PaleGoldenRod",
"LightGreen",
"LightSlateGray",
"HoneyDew",
"Fuchsia",
"LightSeaGreen",
"DarkOrchid",
"Green",
"Chartreuse",
"LimeGreen",
"AntiqueWhite",
"Beige",
"Gainsboro",
"Bisque",
"SaddleBrown",
"Silver",
"Lavender",
"Teal",
"LightCyan",
"PapayaWhip",
"Purple",
"Coral",
"BurlyWood",
"LightGray",
"Snow",
"MistyRose",
"PowderBlue",
"DarkCyan",
"White",
"Turquoise",
"MediumSlateBlue",
"PeachPuff",
"Moccasin",
"LightSalmon",
"SkyBlue",
"Khaki",
"MediumSpringGreen",
"BlueViolet",
"MintCream",
"Linen",
"SeaGreen",
"HotPink",
"LightYellow",
"BlanchedAlmond",
"RoyalBlue",
"RosyBrown",
"MediumOrchid",
"DarkTurquoise",
"LightGoldenRodYellow",
"LightSkyBlue",
]
# Overlay mask with transparency on top of the image.
def overlay(image, mask, color, alpha_transparency=0.5):
for channel in range(3):
image[:, :, channel] = np.where(
mask == 1,
image[:, :, channel] * (1 - alpha_transparency)
+ alpha_transparency * color[channel] * 255,
image[:, :, channel],
)
return image
def visualize_detections(image_path, output_path, detections, labels=[]):
image = Image.open(image_path).convert(mode="RGB")
# Get image dimensions.
im_width, im_height = image.size
line_width = 2
font = ImageFont.load_default()
for d in detections:
color = COLORS[d["class"] % len(COLORS)]
# Dynamically convert PIL color into RGB numpy array.
pixel_color = Image.new("RGB", (1, 1), color)
# Normalize.
np_color = (np.asarray(pixel_color)[0][0]) / 255
# Process TF and TRT instance segmentation masks.
if isinstance(d["mask"], np.ndarray) and d["mask"].shape == (33, 33):
# Get detection bbox resolution.
det_width = round(d["xmax"] - d["xmin"])
det_height = round(d["ymax"] - d["ymin"])
# Create an image out of predicted mask array.
small_mask = Image.fromarray(d["mask"])
# Upsample mask to detection bbox's size.
mask = small_mask.resize((det_width, det_height), resample=Image.BILINEAR)
# Create an original image sized template for correct mask placement.
pad = Image.new("L", (im_width, im_height))
# Place your mask according to detection bbox placement.
pad.paste(mask, (round(d["xmin"]), (round(d["ymin"]))))
# Reconvert mask into numpy array for evaluation.
padded_mask = np.array(pad)
# Creat np.array from original image, copy in order to modify.
image_copy = np.asarray(image).copy()
# Image with overlaid mask.
masked_image = overlay(image_copy, padded_mask, np_color)
# Reconvert back to PIL.
image = Image.fromarray(masked_image)
# Separate clause for ground truth instance segmentation masks.
elif isinstance(d["mask"], np.ndarray):
# Creat np.array from original image, copy in order to modify.
image_copy = np.asarray(image).copy()
# Image with overlaid mask.
masked_image = overlay(image_copy, d["mask"], np_color)
# Reconvert back to PIL
image = Image.fromarray(masked_image)
# Bbox lines.
draw = ImageDraw.Draw(image)
draw.line(
[
(d["xmin"], d["ymin"]),
(d["xmin"], d["ymax"]),
(d["xmax"], d["ymax"]),
(d["xmax"], d["ymin"]),
(d["xmin"], d["ymin"]),
],
width=line_width,
fill=color,
)
label = "Class {}".format(d["class"])
if d["class"] < len(labels):
label = "{}".format(labels[d["class"]])
score = d["score"]
text = "{}: {}%".format(label, int(100 * score))
if score < 0:
text = label
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
text_bottom = max(text_height, d["ymin"])
text_left = d["xmin"]
margin = np.ceil(0.05 * text_height)
draw.rectangle(
[
(text_left, text_bottom - text_height - 2 * margin),
(text_left + text_width, text_bottom),
],
fill=color,
)
draw.text(
(text_left + margin, text_bottom - text_height - margin),
text,
fill="black",
font=font,
)
if output_path is None:
return image
image.save(output_path)
def concat_visualizations(images, names, colors, output_path):
def draw_text(draw, font, text, width, bar_height, offset, color):
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
draw.rectangle([(offset, 0), (offset + width, bar_height)], fill=color)
draw.text(
(offset + (width - text_width) / 2, text_height - text_height / 2),
text,
fill="black",
font=font,
)
bar_height = 18
width = 0
height = 0
for im in images:
width += im.width
height = max(height, im.height)
concat = Image.new("RGB", (width, height + bar_height))
draw = ImageDraw.Draw(concat)
font = ImageFont.load_default()
offset = 0
for i, im in enumerate(images):
concat.paste(im, (offset, bar_height))
draw_text(draw, font, names[i], im.width, bar_height, offset, colors[i])
offset += im.width
if output_path is None:
return concat
concat.save(output_path)