-
Notifications
You must be signed in to change notification settings - Fork 0
/
03_med_coun_.R
161 lines (135 loc) · 5.85 KB
/
03_med_coun_.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#--------------------------------
# Author: Carlos Ortega
# Diseases Analysis - 2017_07_05
# Input: "Nombres_ficheros_interes.txt"
# Output: DataFrame with 2013 - Name_Disease - All Ages - Value for Females - Males
#--------------------------------
#--------------------------------
# Library Loadings
library(data.table)
library(stringr)
#--------------------------------
# Get Data
nam_files <- fread("Nombres_ficheros_de_interes.txt", header = FALSE)
a <- Sys.time()
dat_end <- data.frame( cause = 0, med_mal = 0, med_fem = 0, med_dif = 0)
for (i in 1:nrow(nam_files)) {
# for (i in 1:3) {
print(i)
print(nam_files$V1[i])
a2 <- Sys.time()
file_tmp <- fread(nam_files$V1[i], header = TRUE)
med_all <- file_tmp[location_name != "Global" & year == 2013 & age_group_name != "All Ages" & unit == "number" ]
# loc_all <- unique(med_all[ ,.(location_id, location_code, location_name)])
to_rem <- c(2, 3, 4, 5,9,31,32,42,56,64,65,73,96,100,103,104,120,124,134,137,138,166,167,174,192,199)
med_cl <- med_all[ !(location_id %in% to_rem),]
# by country
med_cl$mean <- as.numeric(med_cl$mean) #in some cases are character
tot_coun <- med_cl[, tot_coun := sum(mean), by = c('location_id','sex_id') ]
tot_all <- med_cl[, tot_all := sum(mean), by = c('location_id')]
tot_rat <- med_cl[, tot_rat := tot_coun/tot_all]
med_mal <- median(as.numeric(med_cl[ sex_id == 1, tot_rat]), na.rm = TRUE)
med_fem <- median(as.numeric(med_cl[ sex_id == 2, tot_rat]), na.rm = TRUE)
med_dif <- med_mal - med_fem
cau_se <- unique(med_cl$cause_name)
dat_end[i, 1] <- cau_se
dat_end[i, 2] <- med_mal
dat_end[i, 3] <- med_fem
dat_end[i, 4] <- med_dif
b2 <- Sys.time(); print(b2 - a2)
}
b <- Sys.time(); b - a
save(dat_end, file = "dat_med_country_end.RData")
write.table(dat_end, file = "dat_med_country_end.csv", sep = ",", row.names = FALSE, dec = ".", quote = FALSE)
library(ggplot2)
library(ggalt)
library(dplyr)
dat_end <- as.data.table(dat_end)
dat_end <- unique(dat_end)
dat_end <- dat_end[!is.na(dat_end$med_mal), ] # Ine Row is has NA (Chlamydial)
df <- dat_end
df <- arrange(df, desc(med_mal))
df$disease <- factor(df$cause, ordered = TRUE, levels = df$cause, labels = df$cause)
# df <- mutate(df, disease=factor(cause, levels=rev(cause)))
# Maes and Females separately
gg <- ggplot(df, aes(x = med_fem, xend = med_mal, y = disease))
gg <- gg + geom_dumbbell(colour = "#686868",
colour_x = "pink",
colour_xend = "blue",
size_x = 2.5,
size_xend = 2.5)
# gg <- gg + scale_x_continuous(breaks=seq(60, 160, by=20),
# labels=sprintf("$%sK", comma(seq(60, 160, by=20))))
gg <- gg + labs(x = "Median deaths ratios", y = NULL,
title = "Sex Deaths Disparity",
caption = "Data from UN")
gg <- gg + theme_bw()
gg <- gg + theme(axis.ticks = element_blank())
gg <- gg + theme(panel.grid.minor = element_blank())
gg <- gg + theme(panel.border = element_blank())
gg <- gg + theme(axis.title.x = element_text(hjust = 1, face = "italic", margin = margin(t = -24)))
gg <- gg + theme(plot.caption = element_text(size = 8, margin = margin(t = 24)))
gg
ggsave("Median_Deaths_Ratios_Country.eps", device = "eps")
# Differences
gg <- ggplot(df, aes(x = med_dif, xend = med_dif, y = disease))
gg <- gg + geom_dumbbell(colour = "#686868",
colour_xend = "blue",
colour_x = "blue",
size_x = 2.5,
size_xend = 2.5)
gg <- gg + labs(x = "(Male minus Female)", y = NULL,
title = "Sex Deaths Differences",
caption = "Data from UN")
gg <- gg + theme_bw()
gg <- gg + theme(axis.ticks = element_blank())
gg <- gg + theme(panel.grid.minor = element_blank())
gg <- gg + theme(panel.border = element_blank())
gg <- gg + theme(axis.title.x = element_text(hjust = 1, face = "italic", margin = margin(t = -24)))
gg <- gg + theme(plot.caption = element_text(size = 8, margin = margin(t = 24)))
gg <- gg + geom_vline(xintercept = 0, color = "red")
gg
ggsave("Median_Deaths_Differences_Country.eps", device = "eps")
# Differences - Boxplots
y <- df$med_dif
df_box <- data.frame(
x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)
)
gg <- ggplot(df_box, aes(x)) +
geom_boxplot(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"
)
gg
gg <- gg + coord_flip()
gg
gg <- gg + theme_bw()
gg <- gg + theme(axis.ticks = element_blank())
gg <- gg + theme(panel.grid.minor = element_blank())
gg <- gg + theme(panel.border = element_blank())
gg <- gg + theme(axis.title.x = element_text(hjust = 1, face = "italic", margin = margin(t = -24)))
gg <- gg + theme(plot.caption = element_text(size = 8, margin = margin(t = 24)))
gg
ggsave("Boxplot_Median_Deaths_Differences_Country.eps", device = "eps")
# Differences - Violin
ggplot(df, aes(x = 1:nrow(df), y = med_dif)) +
geom_violin(trim = FALSE, fill = "steelblue") +
labs(title = "Differences Sex Deaths", x = "", y = "Difference") +
geom_boxplot(width = 0.1, fill = "tomato") +
theme_classic() + coord_flip() +
scale_fill_brewer(palette = "RdBu") + theme_minimal()
ggsave("Violinplot_Median_Deaths_Differences_Country.eps", device = "eps")
)
gg <- gg + theme_bw()
gg <- gg + theme(axis.ticks = element_blank())
gg <- gg + theme(panel.grid.minor = element_blank())
gg <- gg + theme(panel.border = element_blank())
gg <- gg + theme(axis.title.x = element_text(hjust = 1, face = "italic", margin = margin(t = -24)))
gg <- gg + theme(plot.caption = element_text(size = 8, margin = margin(t = 24)))
gg <- gg + geom_vline(xintercept = 0, color = "red")
gg