Skip to content

Commit f489838

Browse files
authored
Create 3、Kafka API操作实践.md
1 parent fc4843d commit f489838

File tree

1 file changed

+396
-0
lines changed

1 file changed

+396
-0
lines changed

Kafka/3、Kafka API操作实践.md

+396
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,396 @@
1+
三、Kafka API操作实践
2+
---
3+
### 1、Producer API
4+
1)消息发送流程
5+
  Kafka的Producer发送消息采用的是**异步发送**的方式。在消息发送的过程中,涉及到了**两个线程——main线程和Sender线程**,以及**一个线程共享变量——RecordAccumulator**。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。
6+
<p align="center">
7+
<img src="https://github.com/Dr11ft/BigDataGuide/blob/master/Pics/Kafka%E6%96%87%E6%A1%A3Pics/Kafka%E6%A1%88%E4%BE%8B/Producer%20API.png"/>
8+
<p align="center">
9+
</p>
10+
</p>
11+
12+
**`batch.size`**:只有数据积累到batch.size之后,sender才会发送数据。
13+
**`linger.ms`**:如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。
14+
15+
2)**异步发送API**
16+
(1)导入依赖
17+
```xml
18+
<dependency>
19+
<groupId>org.apache.kafka</groupId>
20+
<artifactId>kafka-clients</artifactId>
21+
<version>0.11.0.0</version>
22+
</dependency>
23+
```
24+
25+
(2)编写代码
26+
需要用到的类:
27+
**`KafkaProducer`**:需要创建一个生产者对象,用来发送数据
28+
**`ProducerConfig`**:获取所需的一系列配置参数
29+
**`ProducerRecord`**:每条数据都要封装成一个ProducerRecord对象
30+
31+
**1.不带回调函数的API**
32+
```java
33+
import org.apache.kafka.clients.producer.*;
34+
35+
import java.util.Properties;
36+
import java.util.concurrent.ExecutionException;
37+
38+
public class CustomProducer {
39+
40+
public static void main(String[] args) throws ExecutionException, InterruptedException {
41+
Properties props = new Properties();
42+
props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
43+
props.put("acks", "all");
44+
props.put("retries", 1);//重试次数
45+
props.put("batch.size", 16384);//批次大小
46+
props.put("linger.ms", 1);//等待时间
47+
props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
48+
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
49+
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
50+
51+
Producer<String, String> producer = new KafkaProducer<>(props);
52+
for (int i = 0; i < 100; i++) {
53+
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)));
54+
}
55+
producer.close();
56+
}
57+
}
58+
```
59+
60+
**2.带回调函数的API**
61+
&emsp; 回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。
62+
&emsp; **注意**:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
63+
```java
64+
import org.apache.kafka.clients.producer.*;
65+
66+
import java.util.Properties;
67+
import java.util.concurrent.ExecutionException;
68+
69+
public class CustomProducer {
70+
71+
public static void main(String[] args) throws ExecutionException, InterruptedException {
72+
Properties props = new Properties();
73+
props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
74+
props.put("acks", "all");
75+
props.put("retries", 1);//重试次数
76+
props.put("batch.size", 16384);//批次大小
77+
props.put("linger.ms", 1);//等待时间
78+
props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
79+
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
80+
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
81+
82+
Producer<String, String> producer = new KafkaProducer<>(props);
83+
for (int i = 0; i < 100; i++) {
84+
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)), new Callback() {
85+
86+
//回调函数,该方法会在Producer收到ack时调用,为异步调用
87+
@Override
88+
public void onCompletion(RecordMetadata metadata, Exception exception) {
89+
if (exception == null) {
90+
System.out.println("success->" + metadata.offset());
91+
} else {
92+
exception.printStackTrace();
93+
}
94+
}
95+
});
96+
}
97+
producer.close();
98+
}
99+
}
100+
```
101+
102+
3)**同步发送API**
103+
&emsp; 同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。
104+
&emsp; 由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。
105+
```java
106+
import org.apache.kafka.clients.producer.KafkaProducer;
107+
import org.apache.kafka.clients.producer.Producer;
108+
import org.apache.kafka.clients.producer.ProducerRecord;
109+
110+
import java.util.Properties;
111+
import java.util.concurrent.ExecutionException;
112+
113+
public class CustomProducer {
114+
115+
public static void main(String[] args) throws ExecutionException, InterruptedException {
116+
Properties props = new Properties();
117+
props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
118+
props.put("acks", "all");
119+
props.put("retries", 1);//重试次数
120+
props.put("batch.size", 16384);//批次大小
121+
props.put("linger.ms", 1);//等待时间
122+
props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
123+
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
124+
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
125+
126+
Producer<String, String> producer = new KafkaProducer<>(props);
127+
for (int i = 0; i < 100; i++) {
128+
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i))).get();
129+
}
130+
producer.close();
131+
}
132+
}
133+
```
134+
135+
### 2、Consumer API
136+
&emsp; Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。
137+
&emsp; 由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
138+
&emsp; 所以offset的维护是Consumer消费数据是必须考虑的问题。
139+
140+
1)**手动提交offset**
141+
(1)导入依赖
142+
```xml
143+
<dependency>
144+
<groupId>org.apache.kafka</groupId>
145+
<artifactId>kafka-clients</artifactId>
146+
<version>0.11.0.0</version>
147+
</dependency>
148+
```
149+
150+
(2)编写代码
151+
需要用到的类:
152+
**`KafkaConsumer`**:需要创建一个消费者对象,用来消费数据
153+
**`ConsumerConfig`**:获取所需的一系列配置参数
154+
**`ConsuemrRecord`**:每条数据都要封装成一个ConsumerRecord对象
155+
156+
```java
157+
import org.apache.kafka.clients.consumer.ConsumerRecord;
158+
import org.apache.kafka.clients.consumer.ConsumerRecords;
159+
import org.apache.kafka.clients.consumer.KafkaConsumer;
160+
161+
import java.util.Arrays;
162+
import java.util.Properties;
163+
164+
public class CustomConsumer {
165+
166+
public static void main(String[] args) {
167+
Properties props = new Properties();
168+
props.put("bootstrap.servers", "hadoop102:9092");
169+
props.put("group.id", "test");//消费者组,只要group.id相同,就属于同一个消费者组
170+
props.put("enable.auto.commit", "false");//自动提交offset
171+
172+
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
173+
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
174+
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
175+
consumer.subscribe(Arrays.asList("first"));
176+
while (true) {
177+
ConsumerRecords<String, String> records = consumer.poll(100);
178+
for (ConsumerRecord<String, String> record : records) {
179+
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
180+
}
181+
consumer.commitSync();
182+
}
183+
}
184+
}
185+
```
186+
187+
(3)代码分析:
188+
&emsp; 手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次poll的一批数据最高的偏移量提交;不同点是,commitSync会失败重试,一直到提交成功(如果由于不可恢复原因导致,也会提交失败);而commitAsync则没有失败重试机制,故有可能提交失败。
189+
190+
(4)数据重复消费问题
191+
<p align="center">
192+
<img src="https://github.com/Dr11ft/BigDataGuide/blob/master/Pics/Kafka%E6%96%87%E6%A1%A3Pics/Kafka%E6%A1%88%E4%BE%8B/%E6%95%B0%E6%8D%AE%E9%87%8D%E5%A4%8D%E6%B6%88%E8%B4%B9%E9%97%AE%E9%A2%98.jpg"/>
193+
<p align="center">
194+
</p>
195+
</p>
196+
197+
2)**自动提交offset**
198+
&emsp; 为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
199+
&emsp; 自动提交offset的相关参数:
200+
&emsp; &emsp; `enable.auto.commit`:是否开启自动提交offset功能
201+
&emsp; &emsp; `auto.commit.interval.ms`:自动提交offset的时间间隔
202+
203+
**`代码:`**
204+
```java
205+
import org.apache.kafka.clients.consumer.ConsumerRecord;
206+
import org.apache.kafka.clients.consumer.ConsumerRecords;
207+
import org.apache.kafka.clients.consumer.KafkaConsumer;
208+
209+
import java.util.Arrays;
210+
import java.util.Properties;
211+
212+
public class CustomConsumer {
213+
214+
public static void main(String[] args) {
215+
Properties props = new Properties();
216+
props.put("bootstrap.servers", "hadoop102:9092");
217+
props.put("group.id", "test");
218+
props.put("enable.auto.commit", "true");
219+
props.put("auto.commit.interval.ms", "1000");
220+
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
221+
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
222+
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
223+
consumer.subscribe(Arrays.asList("first"));
224+
while (true) {
225+
ConsumerRecords<String, String> records = consumer.poll(100);
226+
for (ConsumerRecord<String, String> record : records)
227+
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
228+
}
229+
}
230+
}
231+
```
232+
233+
### 3、自定义Interceptor
234+
1)拦截器原理
235+
&emsp; Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
236+
&emsp; 对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如**修改消息**等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是**org.apache.kafka.clients.producer.ProducerInterceptor**,其定义的方法包括:
237+
&emsp; (1)configure(configs)&emsp; 获取配置信息和初始化数据时调用。
238+
&emsp; (2)onSend(ProducerRecord):
239+
&emsp; 该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。**用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区**,否则会影响目标分区的计算。
240+
&emsp; (3)onAcknowledgement(RecordMetadata, Exception):
241+
&emsp; **该方法会在消息从RecordAccumulator成功发送到Kafka Broker之后,或者在发送过程中失败时调用**。并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。
242+
&emsp; (4)close:
243+
&emsp; **关闭interceptor,主要用于执行一些资源清理工作**
244+
&emsp; 如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外**倘若指定了多个interceptor,则producer将按照指定顺序调用它们**,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
245+
246+
2)**拦截器案例**
247+
(1)需求:
248+
&emsp; 实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。
249+
<p align="center">
250+
<img src="https://github.com/Dr11ft/BigDataGuide/blob/master/Pics/Kafka%E6%96%87%E6%A1%A3Pics/Kafka%E6%A1%88%E4%BE%8B/Kafka%E6%8B%A6%E6%88%AA%E5%99%A8.jpg"/>
251+
<p align="center">
252+
</p>
253+
</p>
254+
255+
(2)案例实践
256+
1.增加时间戳拦截器
257+
```java
258+
import java.util.Map;
259+
import org.apache.kafka.clients.producer.ProducerInterceptor;
260+
import org.apache.kafka.clients.producer.ProducerRecord;
261+
import org.apache.kafka.clients.producer.RecordMetadata;
262+
263+
public class TimeInterceptor implements ProducerInterceptor<String, String> {
264+
265+
@Override
266+
public void configure(Map<String, ?> configs) {
267+
268+
}
269+
270+
@Override
271+
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
272+
// 创建一个新的record,把时间戳写入消息体的最前部
273+
return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(),
274+
System.currentTimeMillis() + "," + record.value().toString());
275+
}
276+
277+
@Override
278+
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
279+
280+
}
281+
282+
@Override
283+
public void close() {
284+
285+
}
286+
}
287+
```
288+
289+
2.统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器
290+
```java
291+
import java.util.Map;
292+
import org.apache.kafka.clients.producer.ProducerInterceptor;
293+
import org.apache.kafka.clients.producer.ProducerRecord;
294+
import org.apache.kafka.clients.producer.RecordMetadata;
295+
296+
public class CounterInterceptor implements ProducerInterceptor<String, String>{
297+
private int errorCounter = 0;
298+
private int successCounter = 0;
299+
300+
@Override
301+
public void configure(Map<String, ?> configs) {
302+
303+
}
304+
305+
@Override
306+
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
307+
return record;
308+
}
309+
310+
@Override
311+
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
312+
// 统计成功和失败的次数
313+
if (exception == null) {
314+
successCounter++;
315+
} else {
316+
errorCounter++;
317+
}
318+
}
319+
320+
@Override
321+
public void close() {
322+
// 保存结果
323+
System.out.println("Successful sent: " + successCounter);
324+
System.out.println("Failed sent: " + errorCounter);
325+
}
326+
}
327+
```
328+
329+
3.producer主程序
330+
```java
331+
import java.util.ArrayList;
332+
import java.util.List;
333+
import java.util.Properties;
334+
import org.apache.kafka.clients.producer.KafkaProducer;
335+
import org.apache.kafka.clients.producer.Producer;
336+
import org.apache.kafka.clients.producer.ProducerConfig;
337+
import org.apache.kafka.clients.producer.ProducerRecord;
338+
339+
public class InterceptorProducer {
340+
341+
public static void main(String[] args) throws Exception {
342+
// 1 设置配置信息
343+
Properties props = new Properties();
344+
props.put("bootstrap.servers", "hadoop102:9092");
345+
props.put("acks", "all");
346+
props.put("retries", 0);
347+
props.put("batch.size", 16384);
348+
props.put("linger.ms", 1);
349+
props.put("buffer.memory", 33554432);
350+
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
351+
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
352+
353+
// 2 构建拦截链
354+
List<String> interceptors = new ArrayList<>();
355+
interceptors.add("com.atguigu.kafka.interceptor.TimeInterceptor"); interceptors.add("com.atguigu.kafka.interceptor.CounterInterceptor");
356+
props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);
357+
358+
String topic = "first";
359+
Producer<String, String> producer = new KafkaProducer<>(props);
360+
361+
// 3 发送消息
362+
for (int i = 0; i < 10; i++) {
363+
364+
ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i);
365+
producer.send(record);
366+
}
367+
368+
// 4 一定要关闭producer,这样才会调用interceptor的close方法
369+
producer.close();
370+
}
371+
}
372+
```
373+
374+
(3)测试
375+
&emsp; 在kafka上启动消费者,然后运行客户端java程序。
376+
```xml
377+
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first
378+
```
379+
380+
381+
382+
383+
384+
385+
386+
387+
388+
389+
390+
391+
392+
393+
394+
395+
396+

0 commit comments

Comments
 (0)