|
| 1 | +# Owner(s): ["oncall: jit"] |
| 2 | + |
| 3 | +import io |
| 4 | +import math |
| 5 | +import unittest |
| 6 | + |
| 7 | +import torch |
| 8 | +from torch.nn import init |
| 9 | +from torch.testing._internal.common_utils import skipIfLegacyJitExecutor |
| 10 | +from torch.testing._internal.jit_utils import JitTestCase |
| 11 | + |
| 12 | + |
| 13 | +if __name__ == "__main__": |
| 14 | + raise RuntimeError( |
| 15 | + "This test file is not meant to be run directly, use:\n\n" |
| 16 | + "\tpython test/test_jit.py TESTNAME\n\n" |
| 17 | + "instead." |
| 18 | + ) |
| 19 | + |
| 20 | + |
| 21 | +class TestGenerator(JitTestCase): |
| 22 | + # torch.jit.trace does not properly capture the generator manual seed |
| 23 | + # and thus is non deterministic even if the generator is manually seeded |
| 24 | + @skipIfLegacyJitExecutor("legacy JIT executor does not support Generator type") |
| 25 | + @unittest.expectedFailure |
| 26 | + def test_trace(self): |
| 27 | + def f(): |
| 28 | + generator = torch.Generator() |
| 29 | + generator.seed() |
| 30 | + generator.manual_seed(2023) |
| 31 | + generator.initial_seed() |
| 32 | + tensor = torch.empty(2, 2) |
| 33 | + tensor.uniform_(0, 1, generator=generator) |
| 34 | + return tensor |
| 35 | + |
| 36 | + traced_f = torch.jit.trace(f, ()) |
| 37 | + |
| 38 | + # Run this 3 times to ensure that the generator is being manually seeded |
| 39 | + # each time the traced function is run |
| 40 | + for i in range(3): |
| 41 | + torch.manual_seed(1) |
| 42 | + |
| 43 | + eager_tensor = f() |
| 44 | + |
| 45 | + # Change the seed of the default generator to |
| 46 | + # check that we're using the generator from the |
| 47 | + # trace |
| 48 | + torch.manual_seed(2) |
| 49 | + traced_tensor = traced_f() |
| 50 | + |
| 51 | + self.assertEqual(eager_tensor, traced_tensor) |
| 52 | + |
| 53 | + def test_script(self): |
| 54 | + def f(): |
| 55 | + generator = torch.Generator() |
| 56 | + generator.seed() |
| 57 | + generator.manual_seed(2023) |
| 58 | + generator.initial_seed() |
| 59 | + tensor = torch.empty(2, 2) |
| 60 | + tensor.normal_(-1.0, 1.0, generator=generator) |
| 61 | + return tensor |
| 62 | + |
| 63 | + script_f = torch.jit.script(f, ()) |
| 64 | + |
| 65 | + # Run this 3 times to ensure that the generator is being manually seeded |
| 66 | + # each time the traced function is run |
| 67 | + for i in range(3): |
| 68 | + torch.manual_seed(1) |
| 69 | + |
| 70 | + eager_tensor = f() |
| 71 | + |
| 72 | + # Change the seed of the default generator to |
| 73 | + # check that we're using the generator from the |
| 74 | + # trace |
| 75 | + torch.manual_seed(2) |
| 76 | + |
| 77 | + script_tensor = script_f() |
| 78 | + |
| 79 | + self.assertEqual(eager_tensor, script_tensor) |
| 80 | + |
| 81 | + def test_default_generator(self): |
| 82 | + def f(): |
| 83 | + # check that calling manual seed for the default generator works |
| 84 | + torch.manual_seed(2023) |
| 85 | + tensor = torch.empty(2, 2) |
| 86 | + tensor.normal_(-1.0, 1.0) |
| 87 | + return tensor |
| 88 | + |
| 89 | + torch.manual_seed(1) |
| 90 | + |
| 91 | + eager_tensor = f() |
| 92 | + |
| 93 | + torch.manual_seed(2) |
| 94 | + |
| 95 | + script_f = torch.jit.script(f, ()) |
| 96 | + script_tensor = script_f() |
| 97 | + |
| 98 | + self.assertEqual(eager_tensor, script_tensor) |
| 99 | + |
| 100 | + def test_generator_arg(self): |
| 101 | + def f(generator: torch.Generator): |
| 102 | + tensor = torch.empty(2, 2) |
| 103 | + tensor.normal_(-1.0, 1.0, generator=generator) |
| 104 | + return tensor |
| 105 | + |
| 106 | + generator = torch.Generator() |
| 107 | + generator.manual_seed(2023) |
| 108 | + |
| 109 | + script_f = torch.jit.script(f, (generator,)) |
| 110 | + |
| 111 | + for i in range(3): |
| 112 | + generator = torch.Generator() |
| 113 | + generator.manual_seed(2023 + i) |
| 114 | + |
| 115 | + torch.manual_seed(1 + i) |
| 116 | + |
| 117 | + eager_tensor = f(generator) |
| 118 | + |
| 119 | + generator = torch.Generator() |
| 120 | + generator.manual_seed(2023 + i) |
| 121 | + |
| 122 | + torch.manual_seed(1 + i) |
| 123 | + |
| 124 | + script_tensor = script_f(generator) |
| 125 | + |
| 126 | + self.assertEqual(eager_tensor, script_tensor) |
| 127 | + |
| 128 | + def test_save_load(self): |
| 129 | + class Foo(torch.nn.Module): |
| 130 | + def __init__(self): |
| 131 | + super().__init__() |
| 132 | + self.foo = torch.nn.Linear(2, 2, bias=False) |
| 133 | + self.bar = torch.nn.Linear(2, 2, bias=False) |
| 134 | + |
| 135 | + self.reset_parameters() |
| 136 | + |
| 137 | + def reset_linear(self, module, generator): |
| 138 | + init.kaiming_uniform_( |
| 139 | + module.weight, a=math.sqrt(5), generator=generator |
| 140 | + ) |
| 141 | + |
| 142 | + def reset_parameters(self): |
| 143 | + generator = torch.Generator() |
| 144 | + generator.manual_seed(1) |
| 145 | + self.reset_linear(self.foo, generator) |
| 146 | + |
| 147 | + generator = torch.Generator() |
| 148 | + generator.manual_seed(2) |
| 149 | + self.reset_linear(self.bar, generator) |
| 150 | + |
| 151 | + def forward(self, x): |
| 152 | + x = self.foo(x) |
| 153 | + x = self.bar(x) |
| 154 | + |
| 155 | + generator = torch.Generator() |
| 156 | + generator.manual_seed(3) |
| 157 | + r = torch.empty_like(x) |
| 158 | + r.normal_(0.0, 1.0, generator=generator) |
| 159 | + |
| 160 | + return x, r |
| 161 | + |
| 162 | + eager_foo = Foo() |
| 163 | + |
| 164 | + script_module = torch.jit.script(Foo()) |
| 165 | + saved_module = io.BytesIO() |
| 166 | + torch.jit.save(script_module, saved_module) |
| 167 | + saved_module.seek(0) |
| 168 | + |
| 169 | + loaded_module = torch.jit.load(saved_module) |
| 170 | + |
| 171 | + self.assertEqual(eager_foo.foo.weight, loaded_module.foo.weight) |
| 172 | + self.assertEqual(eager_foo.bar.weight, loaded_module.bar.weight) |
| 173 | + |
| 174 | + try: |
| 175 | + # Run this 3 times so make sure that the generator seed is being set |
| 176 | + # every time forward is called |
| 177 | + for i in range(3): |
| 178 | + x = torch.ones(2, 2) |
| 179 | + out1, r1 = eager_foo(x) |
| 180 | + out2, r2 = loaded_module(x) |
| 181 | + |
| 182 | + try: |
| 183 | + self.assertEqual(out1, out2) |
| 184 | + except: # noqa: B001, E722 |
| 185 | + print(f"Iteration {i}:\n{out1=}\n{out2=}") |
| 186 | + raise |
| 187 | + |
| 188 | + try: |
| 189 | + self.assertEqual(r1, r2) |
| 190 | + except: # noqa: B001, E722 |
| 191 | + print(f"Iteration {i}:\n{r1=}\n{r2=}") |
| 192 | + raise |
| 193 | + except: # noqa: B001, E722 |
| 194 | + print(loaded_module.forward.code) |
| 195 | + raise |
0 commit comments