@@ -11849,53 +11849,53 @@
11849
11849
dispatch:
11850
11850
CompositeImplicitAutograd: pad_symint
11851
11851
11852
- - func: upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11852
+ - func: upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11853
11853
python_module: nn
11854
11854
autogen: upsample_linear1d.vec_out
11855
11855
11856
- - func: upsample_bilinear2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11856
+ - func: upsample_bilinear2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11857
11857
python_module: nn
11858
11858
autogen: upsample_bilinear2d.vec_out
11859
11859
tags: core
11860
11860
11861
- - func: _upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11861
+ - func: _upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11862
11862
python_module: nn
11863
11863
autogen: _upsample_bilinear2d_aa.vec_out
11864
11864
11865
- - func: upsample_trilinear3d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11865
+ - func: upsample_trilinear3d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11866
11866
python_module: nn
11867
11867
autogen: upsample_trilinear3d.vec_out
11868
11868
11869
- - func: upsample_bicubic2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11869
+ - func: upsample_bicubic2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11870
11870
python_module: nn
11871
11871
autogen: upsample_bicubic2d.vec_out
11872
11872
11873
- - func: _upsample_bicubic2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11873
+ - func: _upsample_bicubic2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
11874
11874
python_module: nn
11875
11875
autogen: _upsample_bicubic2d_aa.vec_out
11876
11876
11877
- - func: upsample_nearest1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11877
+ - func: upsample_nearest1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11878
11878
python_module: nn
11879
11879
autogen: upsample_nearest1d.vec_out
11880
11880
11881
- - func: _upsample_nearest_exact1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11881
+ - func: _upsample_nearest_exact1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11882
11882
python_module: nn
11883
11883
autogen: _upsample_nearest_exact1d.vec_out
11884
11884
11885
- - func: upsample_nearest2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11885
+ - func: upsample_nearest2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11886
11886
python_module: nn
11887
11887
autogen: upsample_nearest2d.vec_out
11888
11888
tags: core
11889
11889
11890
- - func: _upsample_nearest_exact2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11890
+ - func: _upsample_nearest_exact2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11891
11891
python_module: nn
11892
11892
autogen: _upsample_nearest_exact2d.vec_out
11893
11893
11894
- - func: upsample_nearest3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11894
+ - func: upsample_nearest3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11895
11895
python_module: nn
11896
11896
autogen: upsample_nearest3d.vec_out
11897
11897
11898
- - func: _upsample_nearest_exact3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors, bool round_with_scale_factor=False ) -> Tensor
11898
+ - func: _upsample_nearest_exact3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor
11899
11899
python_module: nn
11900
11900
autogen: _upsample_nearest_exact3d.vec_out
11901
11901
0 commit comments