|
| 1 | +# Essential Array Operations with NumPy |
| 2 | + |
| 3 | +:::{objectives} |
| 4 | + |
| 5 | +1. Reshape arrays to transform data structures while preserving values |
| 6 | +2. Combine arrays using concatenation operations along different axes |
| 7 | +3. Generate descriptive statistics from arrays using NumPy's built-in functions |
| 8 | +4. Apply the axis parameter correctly to perform row-wise and column-wise operations |
| 9 | +5. Integrate reshaping, concatenation, and statistical functions to solve practical data problems |
| 10 | + |
| 11 | +::: |
| 12 | + |
| 13 | +:::{exercise} Time |
| 14 | +20 Minutes |
| 15 | +::: |
| 16 | + |
| 17 | +## Introduction |
| 18 | + |
| 19 | +NumPy is the foundation of Python's data science ecosystem. At its core is the powerful ndarray object - an efficient, versatile container for large datasets. We'll explore three essential capabilities: |
| 20 | + |
| 21 | +* Reshaping arrays to organize data differently |
| 22 | +* Combining arrays using concatenation |
| 23 | +* Generating summary statistics to understand our data |
| 24 | + |
| 25 | +Let's dive into how these operations can transform the way we work with numerical data. |
| 26 | + |
| 27 | +## Reshaping Arrays |
| 28 | + |
| 29 | +### Understanding Array Dimensions |
| 30 | + |
| 31 | +Arrays can have different dimensions: |
| 32 | + |
| 33 | +* 1D arrays (vectors): Simple sequences of values |
| 34 | +* 2D arrays (matrices): Tables with rows and columns |
| 35 | +* 3D arrays and beyond: Multi-dimensional structures |
| 36 | + |
| 37 | + |
| 38 | + |
| 39 | +The shape and dimension of an array tell us how data is organized: |
| 40 | + |
| 41 | +```python |
| 42 | +import numpy as np |
| 43 | + |
| 44 | +# Create a simple 1D array |
| 45 | +a = np.ones(6) |
| 46 | +print("Original array:") |
| 47 | +print(a) |
| 48 | +print(f"Dimensions: {a.ndim}") # Number of dimensions |
| 49 | +print(f"Shape: {a.shape}") # Tuple showing size in each dimension |
| 50 | +``` |
| 51 | + |
| 52 | +Output: |
| 53 | + |
| 54 | +```none |
| 55 | +Original array: |
| 56 | +[1. 1. 1. 1. 1. 1.] |
| 57 | +Dimensions: 1 |
| 58 | +Shape: (6,) |
| 59 | +``` |
| 60 | + |
| 61 | +### Reshaping Arrays uisng `reshape` |
| 62 | + |
| 63 | + |
| 64 | + |
| 65 | +* Reshaping allows us to reorganize the same data into different dimensions |
| 66 | +* The key rule: the total number of elements must remain the same |
| 67 | + |
| 68 | +```python |
| 69 | +a = np.array(range(1,7)) |
| 70 | +# Reshape our 1D array with 6 elements into a 2D array (2 rows, 3 columns) |
| 71 | +b = a.reshape(2, 3) |
| 72 | +print("\nReshaped to 2x3 array:") |
| 73 | +print(b) |
| 74 | +print(f"Dimensions: {b.ndim}") |
| 75 | +print(f"Shape: {b.shape}") |
| 76 | +``` |
| 77 | + |
| 78 | +Output |
| 79 | + |
| 80 | +```none |
| 81 | +Reshaped to 2x3 array: |
| 82 | +[[1 2 3] |
| 83 | + [4 5 6]] |
| 84 | +Dimensions: 2 |
| 85 | +Shape: (2, 3) |
| 86 | +``` |
| 87 | + |
| 88 | +#### Practical Example: Preparing a Simple Grayscale Image for an ML Model |
| 89 | + |
| 90 | +* Imagine you have a tiny grayscale image, maybe from a very simple dataset. It's represented as a 2D grid of pixel values. Many basic machine learning algorithms (like Logistic Regression or simple Neural Networks) expect input data where each row is a single sample (a single image) and each column is a feature (a single pixel value). |
| 91 | + |
| 92 | +* Our task is to take a 2D image representation and "flatten" it into a 1D row vector suitable for these algorithms. |
| 93 | + |
| 94 | +```python |
| 95 | +import numpy as np |
| 96 | + |
| 97 | +# 2. Imagine a tiny 3x3 pixel grayscale image |
| 98 | +# Each number represents the brightness of a pixel (0=black, 255=white) |
| 99 | +# This is a 2D NumPy array (a matrix) |
| 100 | +image_2d = np.array([ |
| 101 | + [10, 20, 30], |
| 102 | + [40, 50, 60], |
| 103 | + [70, 80, 90] |
| 104 | +]) |
| 105 | + |
| 106 | +print("Original 2D Image Array:") |
| 107 | +print(image_2d) |
| 108 | +print("Shape of original image:", image_2d.shape) # Output: (3, 3) -> 3 rows, 3 columns |
| 109 | + |
| 110 | +# 3. Prepare for ML: Flatten the image |
| 111 | +# Many ML models expect each sample (our image) as a single row. |
| 112 | +# We need to convert the 3x3 grid into a 1x9 row (1 row, 9 features/pixels). |
| 113 | +# Total number of pixels = 3 * 3 = 9 |
| 114 | + |
| 115 | +# Using reshape: |
| 116 | +# We want 1 row, and NumPy can figure out the number of columns needed. |
| 117 | +# We use '-1' to tell NumPy: "calculate the correct number of columns for me". |
| 118 | +flattened_image = image_2d.reshape(1, 9) |
| 119 | + |
| 120 | +# Alternatively, we could be explicit: |
| 121 | +# flattened_image = image_2d.reshape(1, 9) |
| 122 | + |
| 123 | +print("Flattened Image Array (Ready for ML Model):") |
| 124 | +print(flattened_image) |
| 125 | +print("Shape of flattened image:", flattened_image.shape) # Output: (1, 9) -> 1 row, 9 columns |
| 126 | + |
| 127 | +``` |
| 128 | + |
| 129 | +Output |
| 130 | + |
| 131 | +```none |
| 132 | +Original 2D Image Array: |
| 133 | +[[10 20 30] |
| 134 | + [40 50 60] |
| 135 | + [70 80 90]] |
| 136 | +Shape of original image: (3, 3) |
| 137 | +
|
| 138 | +Flattened Image Array (Ready for ML Model): |
| 139 | +[[10 20 30 40 50 60 70 80 90]] |
| 140 | +Shape of flattened image: (1, 9) |
| 141 | +``` |
| 142 | + |
| 143 | +#### Using -1 as a Dimension |
| 144 | + |
| 145 | +NumPy can automatically calculate one dimension when you use -1: |
| 146 | + |
| 147 | +```python |
| 148 | +image_2d2 = np.array([ |
| 149 | + [10, 20, 30], |
| 150 | + [40, 50, 60], |
| 151 | + [70, 80, 90], |
| 152 | + [100, 50, 60], |
| 153 | + [55, 150, 200], |
| 154 | + [150, 100, 220] |
| 155 | + ]) |
| 156 | + |
| 157 | +print(f"Flattened image: {image_2d2.reshape(-1, 9)}") |
| 158 | +``` |
| 159 | + |
| 160 | +Output |
| 161 | + |
| 162 | +```none |
| 163 | +array([[ 10, 20, 30, 40, 50, 60, 70, 80, 90], |
| 164 | + [100, 50, 60, 55, 150, 200, 150, 100, 220]]) |
| 165 | +``` |
| 166 | + |
| 167 | +## Array Concatenation |
| 168 | + |
| 169 | +Concatenation lets us combine multiple arrays into a single larger array. This is essential when: |
| 170 | + |
| 171 | +* Merging datasets |
| 172 | +* Building up arrays piece by piece |
| 173 | +* Combining results from different operations |
| 174 | + |
| 175 | + |
| 176 | + |
| 177 | +### 1D Array Concatenation |
| 178 | + |
| 179 | +Let's start with the simplest case - joining two 1D arrays: |
| 180 | + |
| 181 | +```python |
| 182 | +# Create two 1D arrays |
| 183 | +a = np.array([1, 2, 3, 4]) |
| 184 | +b = np.array([5, 6, 7, 8]) |
| 185 | + |
| 186 | +# Concatenate them |
| 187 | +combined = np.concatenate((a, b)) |
| 188 | +print("Concatenated 1D arrays:") |
| 189 | +print(combined) |
| 190 | +``` |
| 191 | + |
| 192 | +Output |
| 193 | + |
| 194 | +```none |
| 195 | +Concatenated 1D arrays: |
| 196 | +[1 2 3 4 5 6 7 8] |
| 197 | +``` |
| 198 | + |
| 199 | +### 2D Array Concatenation |
| 200 | + |
| 201 | +When working with 2D arrays, we need to specify the axis of concatenation: |
| 202 | + |
| 203 | +axis=0: Join vertically (collapse rows) |
| 204 | +axis=1: Join horizontally (collapse columns) |
| 205 | + |
| 206 | +#### Vertical Concatenation (axis=0) |
| 207 | + |
| 208 | +```python |
| 209 | +# Create 2D arrays |
| 210 | +x = np.array([[1, 2], [3, 4]]) # 2x2 array |
| 211 | +y = np.array([[5, 6]]) # 1x2 array |
| 212 | + |
| 213 | +# Vertical concatenation (default is axis=0) |
| 214 | +v_combined = np.concatenate((x, y)) |
| 215 | +print("\nVertical concatenation (axis=0):") |
| 216 | +print(v_combined) |
| 217 | +``` |
| 218 | + |
| 219 | +Output |
| 220 | + |
| 221 | +```none |
| 222 | +Vertical concatenation (axis=0): |
| 223 | +[[1 2] |
| 224 | + [3 4] |
| 225 | + [5 6]] |
| 226 | +``` |
| 227 | + |
| 228 | +#### Horizontal Concatenation (axis=1) |
| 229 | + |
| 230 | +```python |
| 231 | +# Create arrays for horizontal concatenation |
| 232 | +p = np.array([[1, 2], [3, 4]]) # 2x2 array |
| 233 | +q = np.array([[5], [6]]) # 2x1 array |
| 234 | + |
| 235 | +# Horizontal concatenation (axis=1) |
| 236 | +h_combined = np.concatenate((p, q), axis=1) |
| 237 | +print("\nHorizontal concatenation (axis=1):") |
| 238 | +print(h_combined) |
| 239 | +``` |
| 240 | + |
| 241 | +Output |
| 242 | + |
| 243 | +```none |
| 244 | +Horizontal concatenation (axis=1): |
| 245 | +[[1 2 5] |
| 246 | + [3 4 6]] |
| 247 | +``` |
| 248 | + |
| 249 | +### Concatenation Requirements |
| 250 | + |
| 251 | +For concatenation to work properly: |
| 252 | + |
| 253 | +* Arrays must have the same shape except in the dimension you're concatenating |
| 254 | +* The non-concatenation dimensions must match exactly |
| 255 | + |
| 256 | +```python |
| 257 | +a = np.array([[1, 2, 3]]) # Shape: (1, 3) |
| 258 | +b = np.array([[4, 5, 6, 7]]) # Shape: (1, 4) |
| 259 | + |
| 260 | +np.concatenate((a,b), axis=0) |
| 261 | +``` |
| 262 | + |
| 263 | +Output |
| 264 | + |
| 265 | +```none |
| 266 | +ValueError: all the input array dimensions except for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 3 and the array at index 1 has size 4 |
| 267 | +``` |
| 268 | + |
| 269 | +```python |
| 270 | +a = np.array([[1, 2, 3]]) # Shape: (1, 3) |
| 271 | +b = np.array([[4, 5, 6, 7]]) # Shape: (1, 4) |
| 272 | +np.concatenate((a,b), axis=1) |
| 273 | +``` |
| 274 | + |
| 275 | +Output |
| 276 | + |
| 277 | +```python |
| 278 | +array([[1, 2, 3, 4, 5, 6, 7]]) |
| 279 | +``` |
| 280 | + |
| 281 | +## Summary Statistics |
| 282 | + |
| 283 | +NumPy provides efficient functions to calculate statistical measures across arrays. These are essential for: |
| 284 | + |
| 285 | +* Data exploration and understanding |
| 286 | +* Identifying patterns and outliers |
| 287 | +* Summarizing large datasets |
| 288 | + |
| 289 | +| Function | Description | |
| 290 | +| np.sum() | Sum of array elements | |
| 291 | +| np.min() | Minimum value | |
| 292 | +| np.max() | Maximum value | |
| 293 | +| np.mean() | Arithmetic mean (average) | |
| 294 | +| np.median() | Median value | |
| 295 | +| np.std() | Standard deviation | |
| 296 | +| np.var() | Variance | |
| 297 | + |
| 298 | +axis=None (default): Operate on all elements (flattened array) |
| 299 | +axis=0: Collapse rows and operate along columns (down) |
| 300 | +axis=1: Collapse columns and operate along rows (across) |
| 301 | + |
| 302 | +```python |
| 303 | +# Create a 2D array |
| 304 | +data = np.array([[1, 2, 3], |
| 305 | + [4, 5, 6]]) |
| 306 | + |
| 307 | +print("Our data:") |
| 308 | +print(data) |
| 309 | + |
| 310 | +# Sum of all elements |
| 311 | +total = np.sum(data) |
| 312 | +print(f"\nTotal sum: {total}") # 21 |
| 313 | + |
| 314 | +# Column sums (axis=0) |
| 315 | +col_sums = np.sum(data, axis=0) |
| 316 | +print(f"Column sums: {col_sums}") # [5 7 9] |
| 317 | + |
| 318 | +# Row sums (axis=1) |
| 319 | +row_sums = np.sum(data, axis=1) |
| 320 | +print(f"Row sums: {row_sums}") # [6 15] |
| 321 | +``` |
| 322 | + |
0 commit comments