-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathindex.html
548 lines (533 loc) · 19.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="../common-revealjs/css/reveal.css">
<link rel="stylesheet" href="../common-revealjs/css/theme/white.css">
<link rel="stylesheet" href="../common-revealjs/css/custom.css">
<script>
// This is needed when printing the slides to pdf
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? '../common-revealjs/css/print/pdf.css' : '../common-revealjs/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<script>
// This is used to display the static images on each slide,
// See global-images in this html file and custom.css
(function() {
if(window.addEventListener) {
window.addEventListener('load', () => {
let slides = document.getElementsByClassName("slide-background");
if (slides.length === 0) {
slides = document.getElementsByClassName("pdf-page")
}
// Insert global images on each slide
for(let i = 0, max = slides.length; i < max; i++) {
let cln = document.getElementById("global-images").cloneNode(true);
cln.removeAttribute("id");
slides[i].appendChild(cln);
}
// Remove top level global images
let elem = document.getElementById("global-images");
elem.parentElement.removeChild(elem);
}, false);
}
})();
</script>
</head>
<body>
<div class="reveal">
<div class="slides">
<div id="global-images" class="global-images">
<img src="../common-revealjs/images/sycl_academy.png" />
<img src="../common-revealjs/images/sycl_logo.png" />
<img src="../common-revealjs/images/trademarks.png" />
</div>
<!--Slide 1-->
<section class="hbox" data-markdown>
## Data Parallelism
</section>
<!--Slide 2-->
<section class="hbox" data-markdown>
## Learning Objectives
* Learn about task parallelism and data parallelism
* Learn about the SPMD model for describing data parallelism
* Learn about SYCL execution and memory models
* Learn about enqueuing kernel functions with `parallel_for`
</section>
<!--Slide 3-->
<section>
<div class="hbox" data-markdown>
#### Task vs data parallelism
</div>
<div class="container" data-markdown>

</div>
<div class="container" data-markdown>
* **Task parallelism** is where you have several,
possibly distinct tasks executing in parallel.
* In task parallelism you optimize for latency.
* **Data parallelism** is where you have the same
task being performed on multiple elements of data.
* In data parallelism you optimize for throughput.
</div>
</section>
<!--Slide 4-->
<section>
<div class="hbox" data-markdown>
#### Vector processors
</div>
<div class="container" data-markdown>
* Many processors are vector processors, which means
they can naturally perform data parallelism.
* GPUs are designed to be parallel.
* CPUs have SIMD instructions which perform the
same instruction on a number elements of data.
</div>
</section>
<!--Slide 5-->
<section>
<div class="hbox" data-markdown>
#### SPMD model for describing data parallelism
</div>
<div class="container">
<div class="col">
Sequential CPU code
<code><pre>
void calc(const int in[], int out[]) {
// all iterations are run in the same
// thread in a loop
for (int i = 0; i < 1024; i++){
out[i] = in[i] * in[i];
}
}
// calc is invoked just once and all
// iterations are performed inline
calc(in, out);
</code></pre>
</div>
<div class="col">
Parallel SPMD code
<code><pre>
void calc(const int in[], int out[], int id) {
// function is described in terms of
// a single iteration
out[id] = in[id] * in[id];
}
// parallel_for invokes calc multiple
// times in parallel
parallel_for(calc, in, out, 1024);
</code></pre>
</div>
</div>
</section>
<!--Slide 6-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col-left" data-markdown>
* In SYCL kernel functions are executed by
**work- items**.
* You can think of a work-item as a thread of
execution.
* Each work-item will execute a SYCL kernel function from start to end.
* A work-item can run on CPU threads, SIMD lanes,
GPU threads, or any other kind of processing
element.
</div>
<div class="col-right" data-markdown>

</div>
</div>
</section>
<!--Slide 5-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* SYCL kernel functions are invoked within an **nd-range**
* An nd-range has a number of work-groups and subsequently a number of work-items
* Work-groups always have the same number of work-items
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 6-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* The nd-range describes an **iteration space**: how it is composed in terms of work-groups and work-items
* An nd-range can be 1, 2 or 3 dimensions
* An nd-range has two components
* The **global-range** describes the total number of work-items in each dimension
* The **local-range** describes the number of work-items in a work-group in each dimension
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 7-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* Each invocation in the iteration space of an nd-range is a work-item
* Each invocation knows which work-item it is on and can query certain information about its position in the nd-range
* Each work-item has the following:
* **Global range**: {12, 12}
* **Global id**: {5, 6}
* **Group range**: {3, 3}
* **Group id**: {1, 1}
* **Local range**: {4, 4}
* **Local id**: {1, 2}
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 8-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
Typically an nd-range invocation SYCL will execute the SYCL kernel function on a very large number of work-items, often in the thousands
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 9-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* Multiple work-items will generally execute concurrently
* On vector hardware this is often done in lock-step, which means the same hardware instructions
* The number of work-items that will execute concurrently can vary from one device to another
* Work-items will be batched along with other work-items in the same work-group
* The order work-items and work-groups are executed in is implementation defined
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 10-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* Work-items in a work-group can be synchronized using a work-group barrier
* All work-items within a work-group must reach the barrier before any can continue on
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 12-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div class="container">
<div class="col" data-markdown>
* SYCL does not support synchronizing across all work-items in the nd-range
* The only way to do this is to split the computation into separate SYCL kernel functions
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 7-->
<section>
<div class="hbox" data-markdown>
#### SYCL execution model
</div>
<div style="display: grid; grid-template-columns: 5fr 2fr;">
<div class="container" data-markdown>
* SYCL also provides a simplified execution model with `sycl::range` in place of `sycl::nd_range`
* Caller only provides the global range
* Local range is decided by the runtime and cannot be inspected
* No synchronization is possible between work items
* Useful for simple problems which don't require synchronization, local memory and ultimate performance
* Runtime may not always have enough information to choose the best-performing size
</div>
<div style="text-align: right;">
<img src="../common-revealjs/images/ndrange.png" alt="ND-Range" style="width:90%" /><br />
<img src="../common-revealjs/images/SYCL_range.png" alt="SYCL-Range" style="width:90%" />
</div>
</div>
</section>
<!--Slide 14-->
<section>
<div class="hbox" data-markdown>
#### Parallel_for
</div>
<div class="container">
<div class="col">
<code><pre>
cgh.<mark>parallel_for</mark><my_kernel>(<mark>nd_range{{1024, 16}, {32, 4}}</mark>,
[=](<mark>nd_item<2> item)</mark>{
// SYCL kernel function is executed
// on a range of work-items
});
</code></pre>
</div>
</div>
<div class="container" data-markdown>
* In SYCL, kernel functions can be enqueued to execute
over a range of work-items using `parallel_for`
* The first argument to `parallel_for` is an `nd_range` or
a `range` which describes the iteration space over which
the kernel is to be executed
* The kernel function has to take an `nd_item` or `item`,
respectively, as the parameter (or any type they can be
implicitly converted to, commonly from `item` to `id`)
</div>
</section>
<!--Slide 16-->
<section>
<div class="hbox" data-markdown>
#### Expressing parallelism
</div>
<div class="container">
<div style="font-size: 90%; display: grid; grid-template-columns: 45% 55%; grid-template-rows: 1fr 1fr 1fr;">
<div style="margin: auto 0; vertical-align: middle;">
<code><pre>
cgh.parallel_for<kernel>((<mark>nd_range<1>{1024,32}</mark>,
[=](<mark>nd_item<1> ndItem</mark>){
/* kernel function code */
id globalId = ndItem.get_global_id();
id localId = ndItem.get_local_id();
});
</code></pre>
</div>
<div style="margin: auto 0; vertical-align: middle;" data-markdown>
* Overload taking an `nd_range` object specifies the global and local range
* An `nd_item` parameter represents the global and local range and index
</div>
<div style="margin: auto 0; vertical-align: middle;">
<code><pre>
cgh.parallel_for<kernel>(<mark>range<1>{1024}</mark>,
[=](<mark>item<1> item</mark>){
/* kernel function code */
id globalId = item.get_id();
});
</code></pre>
</div>
<div style="margin: auto 0; vertical-align: middle;" data-markdown>
* Overload taking a `range` object specifies the global range, runtime decides local range
* An `item` parameter represents the global range and the index within the global range
</div>
<div style="margin: auto 0; vertical-align: middle;">
<code><pre>
cgh.parallel_for<kernel>(<mark>range<1>{1024}</mark>,
[=](<mark>id<1> globalId</mark>){
/* kernel function code */
});
</code></pre>
</div>
<div style="margin: auto 0; vertical-align: middle;" data-markdown>
* Overload taking a `range` object specifies the global range, runtime decides local range
* An `id` parameter represents the index within the global range
</div>
</div>
</div>
</section>
<!--Slide 14-->
<section>
<div class="hbox" data-markdown>
#### SYCL memory model
</div>
<div class="container">
<div class="col" data-markdown>
* Each work-item can access a dedicated region of **private memory**
* A work-item cannot access the private memory of another work-item
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 15-->
<section>
<div class="hbox" data-markdown>
#### SYCL memory model
</div>
<div class="container">
<div class="col-left-3" data-markdown>

</div>
<div class="col-right-2" data-markdown>
* Each work-item can access a dedicated region of **local memory** accessible to all work-items in a work-group
* A work-item cannot access the local memory of another work-group
</div>
</div>
</section>
<!--Slide 16-->
<section>
<div class="hbox" data-markdown>
#### SYCL memory model
</div>
<div class="container">
<div class="col-left-3" data-markdown>

</div>
<div class="col-right-2" data-markdown>
* Each work-item can access a single region of **global memory** that's accessible to all work-items in a ND-range
</div>
</div>
</section>
<!--Slide 17-->
<section>
<div class="hbox" data-markdown>
#### SYCL memory model
</div>
<div class="container">
<div class="col" data-markdown>
* Each memory region has a different size and access latency
* Global memory is larger than local memory and local memory is larger than private memory
* Private memory is faster than local memory and local memory is faster than global memory
</div>
<div class="col" data-markdown>

</div>
</div>
</section>
<!--Slide 22-->
<section>
<div class="hbox" data-markdown>
#### Accessing Data With Accessors
</div>
<div class="container" data-markdown>
* There are a few different ways to access the data represented by an accessor
* The subscript operator can take an **id**
* Must be the same dimensionality of the accessor
* For dimensions > 1, linear address is calculated in row major
* Nested subscript operators can be called for each dimension taking a **size_t**
* E.g. a 3-dimensional accessor: acc[x][y][z] = …
* A pointer to memory can be retrieved by calling **get_pointer**
* This returns a raw pointer to the data
</div>
</section>
<!--Slide 23-->
<section>
<div class="hbox" data-markdown>
#### Accessing Data With Accessors
</div>
<div class="container">
<div class="col-left-3">
<code><pre>
buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));
buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));
buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));
gpuQueue.submit([&](handler &cgh){
sycl::accessor inA{bufA, cgh, sycl::read_only};
sycl::accessor inB{bufB, cgh, sycl::read_only};
sycl::accessor out{bufO, cgh, sycl::write_only};
cgh.parallel_for<add>(range<1>(dA.size()),
[=](id<1> i){
<mark>out[i] = inA[i] + inB[i];</mark>
});
});
</code></pre>
</div>
<div class="col-right-2" data-markdown>
* Here we access the data of the `accessor` by
passing in the `id` passed to the SYCL kernel
function.
</div>
</div>
</section>
<!--Slide 24-->
<section>
<div class="hbox" data-markdown>
#### Accessing Data With Accessors
</div>
<div class="container">
<div class="col-left-3">
<code><pre>
buffer<float, 1> bufA(dA.data(), range<1>(dA.size()));
buffer<float, 1> bufB(dB.data(), range<1>(dB.size()));
buffer<float, 1> bufO(dO.data(), range<1>(dO.size()));
gpuQueue.submit([&](handler &cgh){
sycl::accessor inA{bufA, cgh, sycl::read_only};
sycl::accessor inB{bufB, cgh, sycl::read_only};
sycl::accessor out{bufO, cgh, sycl::write_only};
cgh.parallel_for<add>(rng, [=](item<3> i){
<mark>auto ptrA = inA.get_pointer();</mark>
<mark>auto ptrB = inB.get_pointer();</mark>
<mark>auto ptrO = out.get_pointer();</mark>
<mark>auto linearId = i.get_linear_id();</mark>
<mark>ptrA[linearId] = ptrB[linearId] + ptrO[linearId]; </mark>
});
});
</code></pre>
</div>
<div class="col-right-2" data-markdown>
* Here we retrieve the underlying pointer for each
of the `accessor`s.
* We then access the pointer using the linearized
`id` by calling the `get_linear_id` member function
on the `item`.
* Again this linearization is calculated in
row-major order.
</div>
</div>
</section>
<!--Slide 17-->
<section class="hbox" data-markdown>
## Questions
</section>
<!--Slide 18-->
<section>
<div class="hbox" data-markdown>
#### Exercise
</div>
<div class="container" data-markdown>
Code_Exercises/Data_Parallelism/source.cpp
</div>
<div class="container" data-markdown>
Implement a SYCL application using `parallel_for` to add two arrays of values
</div>
<div class="container" data-markdown>
* Use buffers and accessors to manage data
* Try the `sycl::range` and `sycl::nd_range` variants
</div>
</section>
</div>
</div>
<script src="../common-revealjs/js/reveal.js"></script>
<script src="../common-revealjs/plugin/markdown/marked.js"></script>
<script src="../common-revealjs/plugin/markdown/markdown.js"></script>
<script src="../common-revealjs/plugin/notes/notes.js"></script>
<script>
Reveal.initialize();
Reveal.configure({ slideNumber: true });
</script>
</body>
</html>