-
Notifications
You must be signed in to change notification settings - Fork 1
/
BiLSTM_Model.py
271 lines (244 loc) · 12.5 KB
/
BiLSTM_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import CRF as crf
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
import numpy as np
import sys
import copy
from utils import Progbar
import pdb
class BiLSTM_Model(crf.CRF):
def __init__(self, options):
self.options = options
self.set_constants()
if torch.cuda.is_available():
self.GPU = True
else:
self.GPU = False
super(BiLSTM_Model, self).__init__(options, self.GPU)
self.embedding_dim = options['EMBEDDING_DIM']
self.hidden_dim = options['HIDDEN_DIM']
self.vocab_size = len(options['VOCAB']) + 2
self.word_embeds = nn.Embedding(self.vocab_size, self.embedding_dim).type(self.dtype)
if options['USE_EMBEDDING']:
self.word_embeds.weight = nn.Parameter(torch.FloatTensor(options['EMBEDDING_MATRIX']).type(self.dtype))
self.num_features = len(options['FEATURE_VOCAB'])
if self.options['MODEL_TYPE'] == 'features_with_embeddings':
self.lstm = nn.LSTM(self.embedding_dim + self.num_features, self.hidden_dim // 2,
num_layers=1, bidirectional=True).type(self.dtype)
else:
self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim // 2,
num_layers=1, bidirectional=True).type(self.dtype)
if self.options['MODEL_TYPE'] == 'features_with_lstm':
self.hidden2tag = nn.Linear(self.hidden_dim + self.num_features, self.tagset_size).type(self.dtype)
else:
self.hidden2tag = nn.Linear(self.hidden_dim, self.tagset_size).type(self.dtype)
self.hidden = self.init_hidden()
self.best_val_acc = None
def set_constants(self):
assert hasattr(self, 'options'), 'Options have not been set'
self.FEATURE_SUPPORT = False if self.options['MODEL_TYPE'] == 'no_features' else True
self.FILENAME = self.options['DATA_DIR'] + 'ilp_problem_' + str(self.options['THREAD_IX']) + '.lp'
self.TEMP_FILENAME = self.options['DATA_DIR'] + 'temp_' + str(self.options['THREAD_IX']) + '.out'
self.GLPK_LOCATION = '/usr/local/bin/glpsol'
def provides_feature_support(self):
return self.FEATURE_SUPPORT
def generate_autograd_variable(self, X):
if self.GPU:
return autograd.Variable(torch.cuda.LongTensor(X))
else:
return autograd.Variable(torch.LongTensor(X))
def init_hidden(self):
return (autograd.Variable(torch.zeros(2, 1, self.hidden_dim // 2).type(self.dtype)),
autograd.Variable(torch.zeros(2, 1, self.hidden_dim // 2)).type(self.dtype))
def _get_features(self, sentence, feature_vector=None):
self.hidden = self.init_hidden()
if self.options['MODEL_TYPE'] == 'features_with_embeddings':
assert feature_vector is not None
embeds = torch.cat([self.word_embeds(sentence), feature_vector], dim=-1).view(len(sentence), 1, -1)
else:
embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
if self.options['MODEL_TYPE'] == 'features_with_lstm':
assert feature_vector is not None
lstm_out = torch.cat([lstm_out, feature_vector], dim=-1)
else:
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
def neg_log_likelihood(self, sentence, feature_vector=None, tags=[]):
feats = self._get_features(sentence, feature_vector)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward(self, sentence, feature_vector=None, mode='crf', partial_labels=None, sentence_markers=None):
mode = mode.lower()
assert mode in set(['crf', 'ccm'])
feats = self._get_features(sentence, feature_vector)
if partial_labels is not None:
assert mode == 'ccm'
if mode == 'crf':
score, tag_seq = self._viterbi_decode(feats)
else:
score, tag_seq = self._ccm_decode(feats, partial_labels, sentence_markers)
return score, tag_seq
def get_sentence_feature_vector(self, elem):
sentence_markers = None
assert type(elem) == tuple, "ERROR. Data has to be 3 tuple"
assert len(elem) == 3, "ERROR. Data has to be 3 tuple"
sentence = self.generate_autograd_variable(elem[0])
feature_vector = autograd.Variable(torch.Tensor(elem[1]).type(self.dtype))
sentence_markers = elem[2]
return sentence, feature_vector, sentence_markers
def predict(self, X, mode='crf', partial_labels=None, use_bar=False):
use_sentence_markers = self.options['SENTENCE_MARKERS']
if type(X) != list:
X = [X]
predictions = []
if use_bar:
bar = Progbar(len(X))
else:
bar = None
for ix, elem in enumerate(X):
sentence, feature_vector, sentence_markers = self.get_sentence_feature_vector(elem)
if use_sentence_markers:
assert sentence_markers is not None, "Sentence marker for %d is None" % (ix)
else:
sentence_markers = None
if partial_labels is None:
_, prediction = self.__call__(sentence, feature_vector, mode, sentence_markers=sentence_markers)
else:
_, prediction = self.__call__(sentence, feature_vector, mode, partial_labels[ix], sentence_markers=sentence_markers)
for jx in xrange(len(prediction)):
if partial_labels[ix][jx] != -1:
assert partial_labels[ix][jx] == prediction[jx]
predictions.append(prediction)
if bar is not None:
bar.update(ix + 1)
if len(predictions) == 1:
return predictions[0]
else:
return predictions
def train_epoch(self, X, y, show_bar=True):
optimizer = optim.Adam(self.parameters())
if show_bar:
bar = Progbar(len(X))
for ix, (elem, tags) in enumerate(zip(X, y)):
self.zero_grad()
sentence, feature_vector, sentence_markers = self.get_sentence_feature_vector(elem)
if self.GPU:
targets = torch.LongTensor(tags).cuda()
else:
targets = torch.LongTensor(tags)
neg_log_likelihood = self.neg_log_likelihood(sentence, feature_vector, targets)
neg_log_likelihood.backward()
optimizer.step()
if show_bar:
bar.update(ix + 1)
if show_bar:
print ''
sys.stdout.flush()
def save_model(self, X_val, y_val, save_prefix, save_best, epoch):
val_acc = []
for elem, tags in zip(X_val, y_val):
sentence, feature_vector, sentence_markers = self.get_sentence_feature_vector(elem)
_, predictions = self.__call__(sentence, feature_vector, mode='crf')
val_acc.append(accuracy_score(tags, predictions))
val_acc = np.array(val_acc)
mean_val_acc = val_acc.mean()
if save_best:
if self.best_val_acc is None or mean_val_acc == max(mean_val_acc, self.best_val_acc):
self.best_val_acc = mean_val_acc
save_elem = {'constraint_penalty': self.constraint_penalty, 'state_dict': self.state_dict()} if hasattr(self, 'constraint_penalty') and self.constraint_penalty is not None else {'constraint_penalty': 0., 'state_dict': self.state_dict()}
torch.save(save_elem, save_prefix + '_on_epoch_{0:d}_val_acc_{1:.3f}.weights'.format(epoch, mean_val_acc))
else:
save_elem = {'constraint_penalty': self.constraint_penalty, 'state_dict': self.state_dict()} if hasattr(self, 'constraint_penalty') and self.constraint_penalty is not None else {'constraint_penalty': 0., 'state_dict': self.state_dict()}
torch.save(save_elem, save_prefix + '_on_epoch_{0:d}_val_acc_{1:.3f}.weights'.format(epoch, mean_val_acc))
return mean_val_acc
def load_model(self, filename):
elem = torch.load(filename)
self.constraint_penalty = elem['constraint_penalty']
state_dict = elem['state_dict']
self.load_state_dict(state_dict)
def compute_constraint_penalty(self, y):
num_satisfied = 0
for _y in y:
num_satisfied += 1 if len(filter(lambda x: x == self.tag_to_ix['attr'], _y)) > 0 else 0
num_unsatisfied = len(y) - num_satisfied
# smoothing
num_satisfied += 0.1
num_unsatisfied += 0.1
rho_attr = np.log(num_satisfied) - np.log(num_unsatisfied)
return rho_attr
def set_constraint_penalties(self, X, y):
self.constraint_penalty = {}
self.constraint_penalty['AT_LEAST_ONE_ATTR'] = self.compute_constraint_penalty(y)
def train_with_partial_data(self, X_train, y_train, X_unlabeled, y_unlabeled, mode='codl'):
mode = mode.lower()
assert mode in set(['codl', 'em']), "Found unknown mode %s" % (mode)
NUM_ITERATIONS = 5
if mode == 'codl':
# CoDL
gamma = 0.9
original_params = copy.deepcopy(self.state_dict())
original_rho = self.constraint_penalty['AT_LEAST_ONE_ATTR']
data_X = X_unlabeled
for ix in xrange(NUM_ITERATIONS):
print '\tStarting CoDL Iteration : %d / %d' % (ix + 1, NUM_ITERATIONS)
print '\t Making %d Predictions ' % (len(X_unlabeled))
y_predictions = self.predict(X_unlabeled, mode='ccm', partial_labels=y_unlabeled, use_bar=True)
if type(y_predictions) != list:
y_predictions = [y_predictions]
data_y = y_predictions
print '\t Training on %d Observations ' % (len(data_X))
self.set_constraint_penalties(data_X, data_y)
bar = Progbar(NUM_ITERATIONS)
for ix in xrange(NUM_ITERATIONS):
self.train_epoch(data_X, data_y, show_bar=False)
bar.update(ix + 1)
# Now update the parameters
params = self.state_dict()
self.constraint_penalty['AT_LEAST_ONE_ATTR'] = (gamma * original_rho) + ((1. - gamma) * self.constraint_penalty['AT_LEAST_ONE_ATTR'])
for w in params:
if w in original_params:
params[w] = (gamma * original_params[w]) + ((1. - gamma) * params[w])
self.load_state_dict(params)
else:
# EM
data_X = X_train + X_unlabeled
for ix in xrange(NUM_ITERATIONS):
print '\tStarting EM Iteration : %d / %d' % (ix + 1, NUM_ITERATIONS)
# 1.1 E Step : Make predictions
print '\t Making %d Predictions ' % (len(X_unlabeled))
y_predictions = self.predict(X_unlabeled, mode='ccm', partial_labels=y_unlabeled, use_bar=True)
if type(y_predictions) != list:
y_predictions = [y_predictions]
data_y = y_train + y_predictions
print '\t Training on %d Observations ' % (len(data_X))
# 1.2 M Step : Maximize log likelihood
# 1.2.1 Update the constraints
self.set_constraint_penalties(data_X, data_y)
# 1.2.2 Update the parameters
bar = Progbar(NUM_ITERATIONS)
for ix in xrange(NUM_ITERATIONS):
self.train_epoch(data_X, data_y, show_bar=False)
bar.update(ix + 1)
def fit(self, X, y, save_prefix, val_split=0.9, shuffle=False, n_epochs=500, save_best=True, X_unlabeled=None, y_unlabeled=None, mode='em'):
self.set_constraint_penalties(X, y)
if shuffle:
X, y = self.shuffle_data(X, y)
n_train = int(val_split * len(X))
X_train = X[:n_train]
y_train = y[:n_train]
X_val = X[n_train:]
y_val = y[n_train:]
for epoch in xrange(n_epochs):
self.train_epoch(X_train, y_train)
if X_unlabeled is not None:
self.train_with_partial_data(X_train, y_train, X_unlabeled, y_unlabeled, mode)
val_acc = self.save_model(X_val, y_val, save_prefix, save_best, epoch)
print 'EPOCH: ', epoch, 'DONE WITH VALIDATION ACCURACY: ', val_acc
sys.stdout.flush()