Example to build a vector index in Qdrant based on local files.
-
Install Postgres if you don't have one.
-
Run Qdrant.
docker run -d -p 6334:6334 -p 6333:6333 qdrant/qdrant
- Create a collection to export the embeddings to.
curl -X PUT \
'http://localhost:6333/collections/cocoindex' \
--header 'Content-Type: application/json' \
--data-raw '{
"vectors": {
"text_embedding": {
"size": 384,
"distance": "Cosine"
}
}
}'
You can view the collections and data with the Qdrant dashboard at http://localhost:6333/dashboard.
Install dependencies:
pip install -e .
Setup:
python main.py cocoindex setup
Update index:
python main.py cocoindex update
Run:
python main.py
CocoInsight is in Early Access now (Free) 😊 You found us! A quick 3 minute video tutorial about CocoInsight: Watch on YouTube.
Run CocoInsight to understand your RAG data pipeline:
python main.py cocoindex server -c https://cocoindex.io
Then open the CocoInsight UI at https://cocoindex.io/cocoinsight.