Skip to content

Latest commit

 

History

History
121 lines (90 loc) · 6.13 KB

integration.md

File metadata and controls

121 lines (90 loc) · 6.13 KB

Buildsystem Integration

Vcpkg offers many ways to integrate into your build so you can do what's right for your project. There are two main categories of integration:

Each integration style has heuristics to deduce the correct triplet. This can be overridden using a common method based on your buildsystem.

Integrate Command

These link your project(s) to a specific copy of Vcpkg on your machine so any updates or new package installations will be instantly available for the next build of your project.

User-wide for MSBuild (Recommended for Open Source MSBuild projects)

vcpkg integrate install

This will implicitly add Include Directories, Link Directories, and Link Libraries for all packages installed with Vcpkg to all VS2015 and VS2017 MSBuild projects. We also add a post-build action for executable projects that will analyze and copy any DLLs you need to the output folder, enabling a seamless F5 experience.

For the vast majority of libraries, this is all you need to do -- just File -> New Project and write code! However, some libraries perform conflicting behaviors such as redefining main(). Since you need to choose per-project which of these conflicting options you want, you will need to add those libraries to your linker inputs manually.

Here are some examples, though this is not an exhaustive list:

  • Gtest provides gtest, gmock, gtest_main, and gmock_main
  • SDL2 provides SDL2main
  • SFML provides sfml-main
  • Boost.Test provides boost_test_exec_monitor

To get a full list for all your installed packages, run vcpkg owns manual-link.

CMake toolchain file (Recommended for Open Source CMake projects)

cmake ../my/project -DCMAKE_TOOLCHAIN_FILE=C:\vcpkg\scripts\buildsystems\vcpkg.cmake

Projects configured with the Vcpkg toolchain file will have the appropriate Vcpkg folders added to the cmake search paths. This makes all libraries available to be found through find_package(), find_path(), and find_library().

See Example: Using Sqlite for a fully worked example using our CMake toolchain.

Note that we do not automatically add ourselves to your compiler include paths. To use a header-only library, simply use find_path(), which will correctly work on all platforms:

# To find and use catch
find_path(CATCH_INCLUDE_DIR catch.hpp)
include_directories(${CATCH_INCLUDE_DIR})

Linking NuGet file

We also provide individual VS project integration through a NuGet package. This will modify the project file, so we do not recommend this approach for open source projects.

PS D:\src\vcpkg> .\vcpkg integrate project
Created nupkg: D:\src\vcpkg\scripts\buildsystems\vcpkg.D.src.vcpkg.1.0.0.nupkg

With a project open, go to Tools->NuGet Package Manager->Package Manager Console and paste:
    Install-Package vcpkg.D.src.vcpkg -Source "D:/src/vcpkg/scripts/buildsystems"

Note: The generated NuGet package does not contain the actual libraries. It instead acts like a shortcut (or symlink) to the vcpkg install and will "automatically" update with any changes (install/remove) to the libraries. You do not need to regenerate or update the NuGet package.

Manual compiler settings

Libraries are installed into the installed\ subfolder, partitioned by architecture (e.g. x86-windows):

  • The header files are installed to installed\x86-windows\include
  • Release .lib files are installed to installed\x86-windows\lib or installed\x86-windows\lib\manual-link
  • Release .dll files are installed to installed\x86-windows\bin
  • Debug .lib files are installed to installed\x86-windows\debug\lib or installed\x86-windows\debug\lib\manual-link
  • Debug .dll files are installed to installed\x86-windows\debug\bin

See your build system specific documentation for how to use prebuilt binaries.

Generally, to run any produced executables you will also need to either copy the needed DLL files to the same folder as your executable or prepend the correct bin\ directory to your path.

Export Command

This command creates a shrinkwrapped archive containing a specific set of libraries (and their dependencies) that can be quickly and reliably shared with build servers or other users in your organization.

  • --nuget: NuGet package (Recommended for MSBuild projects)
  • --zip: Zip archive
  • --7zip: 7Zip archive (Recommended for CMake projects)
  • --raw: Raw, uncompressed folder

Each of these have the same layout, which mimics the layout of a full vcpkg:

  • installed\ contains the installed package files
  • scripts\buildsystems\vcpkg.cmake is a toolchain file suitable for use with CMake

Additionally, NuGet packages will contain a build\native\vcpkg.targets that integrates with MSBuild projects.

Please also see our blog post for additional examples.

Triplet selection

Every integration mechanism besides manually adding the folders will deduce a triplet for your project as one of:

  • x86-windows
  • x64-windows
  • x86-uwp
  • x64-uwp
  • arm-uwp

With MSBuild

You can see the automatically deduced triplet by setting your MSBuild verbosity to Normal or higher:

Shortcut: Ctrl+Q "build and run"

Tools -> Options -> Projects and Solutions -> Build and Run -> MSBuild project build output verbosity

To override the automatically chosen triplet, you can specify the MSBuild property VcpkgTriplet in your .vcxproj. We recommend adding this to the Globals PropertyGroup.

<PropertyGroup Label="Globals">
  <!-- .... -->
  <VcpkgTriplet Condition="'$(Configuration)'=='Win32'">x86-windows-static</VcpkgTriplet>
  <VcpkgTriplet Condition="'$(Configuration)'=='x64'">x64-windows-static</VcpkgTriplet>
</PropertyGroup>

With CMake

Simply set VCPKG_TARGET_TRIPLET on the configure line.

cmake ../my/project -DVCPKG_TARGET_TRIPLET=x64-windows-static -DCMAKE_TOOLCHAIN_FILE=...