-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
2323 lines (1982 loc) · 73 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.15.2
# kernelspec:
# display_name: incast-analysis-venv
# language: python
# name: incast-analysis-venv
# ---
# %% editable=true slideshow={"slide_type": ""}
# %matplotlib widget
import collections
import json
import math
import os
from os import path
import numpy as np
from matplotlib import pyplot as plt
# TODO: Add burstiness analysis from receiver pcap, flow level
FONTSIZE = 15
LINESIZE = 3
if __name__ == "__main__":
RUN = True
else:
RUN = False
# %%
if RUN:
EXP_DIR = "/data_ssd/ccanel/data/imc2024/sweep/background-senders/15ms-100-0-11-TcpDctcp-10000mbps-2000000B-10icwnd-0offset-none-rwnd0B-20tokens-4g-65ecn-1_0da"
EXP = path.basename(EXP_DIR)
GRAPH_DIR = path.join(EXP_DIR, "graphs")
if not path.isdir(GRAPH_DIR):
os.makedirs(GRAPH_DIR)
# %%
def show(fig):
plt.tight_layout()
# Change the toolbar position
fig.canvas.toolbar_position = "left"
# If true then scrolling while the mouse is over the canvas will not
# move the entire notebook
fig.canvas.capture_scroll = True
fig.show()
def save(graph_dir, prefix=None, suffix=None, extent=None):
"""Save the entire figure."""
assert prefix is not None or suffix is not None
both_defined = prefix is not None and suffix is not None
out_flp = path.join(
graph_dir,
("" if prefix is None else prefix)
+ ("_" if both_defined else "")
+ ("" if suffix is None else suffix),
)
plt.tight_layout()
plt.savefig(out_flp + ".pdf", bbox_inches="tight" if extent is None else extent)
plt.savefig(
out_flp + ".png", dpi=300, bbox_inches="tight" if extent is None else extent
)
def save_axes(figure, axes, graph_dir, prefix=None, suffix=None):
"""Save a single axes, instead of the entire figure."""
extent = axes.get_window_extent().transformed(figure.dpi_scale_trans.inverted())
save(graph_dir, prefix, suffix, extent.expanded(1.3, 1.2))
def get_axes(rows=1, width=8, height=3, cols=1):
with plt.ioff():
fig, axes = plt.subplots(figsize=(width, height * rows), nrows=rows, ncols=cols)
if rows == 1:
axes = [axes]
elif cols == 1:
axes = axes.flatten()
return fig, axes
def get_aligned_xs(old_start_sec, old_end_sec, interp_delta):
# Create a new xs ndarray, ranging from >= old_start_sec to <= old_end_sec, aligned
# at intervals of 1 / interp_delta.
# Round the start *up* to the nearest multiple of 1 / interp_delta.
# math.ceil(start / (1 / interp_delta)) * (1 / interp_delta)
new_start_sec = math.ceil(old_start_sec * interp_delta) / interp_delta
# Round the end *down* to the nearest multiple of 1 / interp_delta.
# math.floor(end / (1 / interp_delta)) * (1 / interp_delta)
new_end_sec = math.floor(old_end_sec * interp_delta) / interp_delta
# If the old start and end are so close together that they do not overlap an
# aligned interval, then we cannot do anything.
if new_start_sec > new_end_sec:
return np.empty(0)
return np.array(
[
x / interp_delta
for x in range(
math.ceil(new_start_sec * interp_delta),
math.floor(new_end_sec * interp_delta) + 1,
)
]
)
def filter_samples(samples, start, end):
return [sample for sample in samples if start <= sample[0] <= end]
def separate_samples_into_bursts(
samples,
burst_times,
flow_times=None,
filter_on_flow_times=False,
bookend=True,
):
num_bursts = len(burst_times)
bursts = []
if filter_on_flow_times:
assert flow_times is not None
else:
assert flow_times is None
flow_times = [(None, None, None, None)] * num_bursts
for burst_idx, (
(burst_start, burst_end),
(flow_start, _, flow_end, _),
) in enumerate(zip(burst_times, flow_times)):
burst = []
for sample in samples:
if burst_start <= sample[0] <= burst_end and (
not filter_on_flow_times or flow_start <= sample[0] <= flow_end
):
# This sample is part of the current burst.
burst.append(sample)
# Insert a sample at precisely the start and end time for this burst,
# if possible.
if bookend:
start, end = (
(flow_start, flow_end)
if filter_on_flow_times
else (burst_start, burst_end)
)
if burst_idx > 0:
# Make sure that the burst has a sample at the start time
# Two case: Either we have no samples for this burst, so we take
# the last value from the previous burst, or we do have samples for
# this burst but not at the start time, so we also take the last
# value from the previous burst. In both cases, make sure there is
# a previous burst.
if (not burst and bursts[-1]) or (
burst and burst[0][0] != start and bursts[-1]
):
burst.insert(0, (start, *bursts[-1][-1][1:]))
# Every burst should now have at least one sample: start.
# Note: This will fail if we have no data for the first burst.
if burst:
# Make sure that the burst has a sample at the end time
if burst[-1][0] != end:
burst.append((end, *burst[-1][1:]))
# Every burst should now have at least two samples: start and end
assert len(burst) >= 2, (burst, start, end)
bursts.append(burst)
# Make sure we have the expected number of bursts
assert len(bursts) == num_bursts
# Adjust the x values of the samples
bursts_ = []
for (start, end), burst in zip(burst_times, bursts):
burst_ = []
for sample in burst:
burst_.append((sample[0] - start, *sample[1:]))
bursts_.append(burst_)
return bursts_
# %% editable=true slideshow={"slide_type": ""}
def parse_times_line(line):
# Format: <start time seconds> <end time seconds>
parts = line.strip().split(" ")
assert len(parts) == 2
return [float(sec) for sec in parts]
def get_burst_times(exp_dir):
with open(
path.join(exp_dir, "logs", "burst_times.log"), "r", encoding="utf-8"
) as fil:
return [parse_times_line(line) for line in fil if line.strip()[0] != "#"]
def get_config_json(exp_dir):
with open(path.join(exp_dir, "config.json"), "r", encoding="utf-8") as fil:
return json.load(fil)
if RUN:
BURST_TIMES = get_burst_times(EXP_DIR)
# BURST_TIMES = [(start, (start + 0.03) if (end - start) > 0.03 else end) for start, end in BURST_TIMES]
# BURST_TIMES = BURST_TIMES[:3]
NUM_BURSTS = len(BURST_TIMES)
CONFIG = get_config_json(EXP_DIR)
# assert NUM_BURSTS == CONFIG["numBursts"]
# ideal_sec = CONFIG["bytesPerSender"] * CONFIG["numSenders"] / (
ideal_sec = CONFIG["bytesPerBurstSender"] * CONFIG["numBurstSenders"] / (
CONFIG["smallLinkBandwidthMbps"] * 1e6 / 8
) + (6 * CONFIG["delayPerLinkUs"] / 1e6)
print(
"Burst times:",
f"Ideal: {ideal_sec * 1e3:.4f} ms",
*[
(
f"{burst_idx + 1}: [{start} -> {end}] - "
f"{(end - start) * 1e3:.4f} ms - "
f"{(end - start) / ideal_sec * 100:.2f} %"
)
for burst_idx, (start, end) in enumerate(BURST_TIMES)
],
sep="\n",
)
# %%
def parse_length_line(line):
# Format: <timestamp seconds> <num packets> <backlog time microseconds>
parts = line.strip().split(" ")
assert len(parts) == 2
time_sec, packets = parts
time_sec = float(time_sec)
packets = int(packets)
# backlog_us = float(backlog_us)
return time_sec, packets # , backlog_us
def parse_mark_line(line):
# Format <timestamp seconds>
parts = line.strip().split(" ")
assert len(parts) == 1
return (float(parts[0]), None)
def parse_drop_line(line):
# Format: <timestamp seconds> <drop type>
parts = line.strip().split(" ")
assert len(parts) == 2
time_sec, drop_type = parts
time_sec = float(time_sec)
drop_type = int(drop_type)
return time_sec, drop_type
def get_lengths_by_burst(exp_dir, queue_prefix, burst_times):
length_samples = []
with open(
path.join(exp_dir, "logs", f"{queue_prefix}_depth.log"), "r", encoding="utf-8"
) as fil:
length_samples = [
parse_length_line(line) for line in fil if line.strip()[0] != "#"
]
return separate_samples_into_bursts(length_samples, burst_times)
def get_marks_by_burst(exp_dir, queue_prefix, burst_times):
mark_samples = []
with open(
path.join(exp_dir, "logs", f"{queue_prefix}_mark.log"), "r", encoding="utf-8"
) as fil:
mark_samples = [parse_mark_line(line) for line in fil if line.strip()[0] != "#"]
return separate_samples_into_bursts(mark_samples, burst_times, bookend=False)
def get_drops_by_burst(exp_dir, queue_prefix, burst_times):
drop_samples = []
with open(
path.join(exp_dir, "logs", f"{queue_prefix}_drop.log"), "r", encoding="utf-8"
) as fil:
drop_samples = [parse_drop_line(line) for line in fil if line.strip()[0] != "#"]
return separate_samples_into_bursts(drop_samples, burst_times, bookend=False)
def get_queue_metrics_by_burst(exp_dir, queue_name, burst_times):
queue_prefix = (
"incast_queue"
if queue_name == "Incast Queue"
else ("uplink_queue" if queue_name == "Uplink Queue" else None)
)
assert queue_prefix is not None
return {
"lengths": get_lengths_by_burst(exp_dir, queue_prefix, burst_times),
"marks": get_marks_by_burst(exp_dir, queue_prefix, burst_times),
"drops": get_drops_by_burst(exp_dir, queue_prefix, burst_times),
}
def graph_queue(
queue_name,
lengths_by_burst,
marks_by_burst,
drops_by_burst,
marking_threshold_packets,
capacity_packets,
graph_dir,
prefix,
):
for burst_idx, burst in enumerate(lengths_by_burst):
# if burst_idx != len(lengths_by_burst) - 1:
# continue
fig, axes = get_axes()
ax = axes[0]
# Plot length
length_xs, length_ys = zip(*burst)
length_xs = np.asarray(length_xs)
length_xs = length_xs * 1e3
ax.plot(
length_xs,
length_ys,
label="queue length",
drawstyle="steps-post",
linewidth=LINESIZE,
alpha=0.8,
)
max_x = length_xs[-1]
max_y = max(length_ys)
# If there are marks, plot them..
if burst_idx < len(marks_by_burst) and marks_by_burst[burst_idx]:
mark_xs, _ = zip(*marks_by_burst[burst_idx])
mark_xs = np.asarray(mark_xs)
mark_xs = mark_xs * 1e3
mark_ys = [marking_threshold_packets] * len(mark_xs)
ax.plot(
mark_xs,
mark_ys,
"x",
color="orange",
label="ECN marks",
linewidth=LINESIZE,
alpha=0.8,
)
max_x = max(max_x, mark_xs[-1])
# If there are drops, plot them..
if burst_idx < len(drops_by_burst) and drops_by_burst[burst_idx]:
drop_xs, _ = zip(*drops_by_burst[burst_idx])
drop_xs = np.asarray(drop_xs)
drop_xs = drop_xs * 1e3
drop_ys = [capacity_packets] * len(drop_xs)
ax.plot(
drop_xs,
drop_ys,
"x",
color="red",
label="drops",
linewidth=LINESIZE,
alpha=0.8,
)
max_x = max(max_x, drop_xs[-1])
# Draw a line at the marking threshold
ax.plot(
[0, max_x],
[marking_threshold_packets] * 2,
label="ECN threshold",
color="orange",
linestyle="dashed",
linewidth=LINESIZE,
alpha=0.8,
)
# For readability, only draw a line at the capacity if the max y is at least half the capacity.
if max_y > capacity_packets / 2:
# Draw a line at the queue capacity
ax.plot(
[0, max_x],
[capacity_packets] * 2,
label="queue capacity",
color="red",
linestyle="dotted",
linewidth=LINESIZE,
alpha=0.8,
)
max_y = capacity_packets
else:
max_y = capacity_packets / 2
# ax.set_title(f"{queue_name} Length: Burst {burst_idx + 1} of {num_bursts}", fontsize=FONTSIZE)
ax.set_xlabel("time (ms)", fontsize=FONTSIZE)
ax.set_ylabel("packets", fontsize=FONTSIZE)
# ax.tick_params(axis='y', labelcolor=blue)
ax.tick_params(axis="x", labelsize=FONTSIZE)
ax.tick_params(axis="y", labelsize=FONTSIZE)
ax.set_xlim(left=-0.01 * max_x, right=1.01 * max_x)
ax.set_ylim(bottom=-0.01 * max_y, top=1.1 * max_y)
ax.legend(fontsize=FONTSIZE, loc="upper right")
with open(
path.join(
graph_dir,
prefix
+ "-"
+ "_".join(queue_name.split(" ")).lower()
+ f"-burst{burst_idx}-length.dat",
),
"w",
encoding="utf-8",
) as fil:
fil.write("time length\n")
fil.write("\n".join(f"{x} {y}" for x, y in burst))
show(fig)
save(
graph_dir,
prefix,
suffix="_".join(queue_name.split(" ")).lower() + "_" + str(burst_idx),
)
if RUN:
MARKING_THRESHOLD = CONFIG["smallQueueMinThresholdPackets"]
QUEUE_CAPACITY = CONFIG["smallQueueSizePackets"]
INCAST_Q_METRICS = get_queue_metrics_by_burst(EXP_DIR, "Incast Queue", BURST_TIMES)
graph_queue(
"Incast Queue",
INCAST_Q_METRICS["lengths"],
INCAST_Q_METRICS["marks"],
INCAST_Q_METRICS["drops"],
MARKING_THRESHOLD,
QUEUE_CAPACITY,
GRAPH_DIR,
EXP,
)
# %%
def calculate_time_at_or_above_threshold_helper(lengths, thresh, start_sec, end_sec):
# Identify crossover points and above regions points by filtering burst_samples.
above_regions = []
last_length = None
last_cross_up = None
for x, length in lengths:
if length < thresh:
if last_cross_up is not None:
above_regions.append((last_cross_up, x))
last_cross_up = None
elif length >= thresh:
if last_length is None or last_length < thresh:
last_cross_up = x
last_length = length
if last_cross_up is not None:
above_regions.append((last_cross_up, end_sec))
above_sec = sum(
region_end_sec - region_start_sec
for region_start_sec, region_end_sec in above_regions
)
total_sec = end_sec - start_sec
return above_sec, total_sec, above_sec / total_sec * 100
def calculate_time_at_or_above_threshold(lengths_by_burst, burst_times, thresh):
return [
calculate_time_at_or_above_threshold_helper(lengths, thresh, start_sec, end_sec)
for burst_idx, (lengths, (start_sec, end_sec)) in enumerate(
zip(lengths_by_burst, burst_times)
)
]
def print_q_above_thresh(lengths_by_burst, burst_times, thresh, label):
num_bursts = len(burst_times)
for burst_idx, (above_sec, _, perc) in enumerate(
calculate_time_at_or_above_threshold(lengths_by_burst, burst_times, thresh)
):
print(
f"Burst {burst_idx + 1} of {num_bursts} "
f"- Time above {label}: {above_sec * 1e3:.2f} ms ({perc:.2f}%)"
)
if RUN:
print_q_above_thresh(
INCAST_Q_METRICS["lengths"], BURST_TIMES, MARKING_THRESHOLD, "marking threshold"
)
# %%
if RUN:
print_q_above_thresh(INCAST_Q_METRICS["lengths"], BURST_TIMES, 1, "empty")
# %%
if RUN:
print_q_above_thresh(
INCAST_Q_METRICS["lengths"], BURST_TIMES, QUEUE_CAPACITY * 0.9, "90% capacity"
)
# %%
if RUN:
UPLINK_Q_METRICS = get_queue_metrics_by_burst(EXP_DIR, "Uplink Queue", BURST_TIMES)
graph_queue(
"Uplink Queue",
UPLINK_Q_METRICS["lengths"],
UPLINK_Q_METRICS["marks"],
UPLINK_Q_METRICS["drops"],
MARKING_THRESHOLD,
QUEUE_CAPACITY,
GRAPH_DIR,
EXP,
)
# %% editable=true slideshow={"slide_type": ""}
def parse_flow_times(flow_times_json):
burst_to_sender_to_flow_times = [
{
times["id"]: (times["start"], times["firstPacket"], times["end"], ip)
for ip, times in flows.items()
}
for burst, flows in sorted(flow_times_json.items(), key=lambda p: int(p[0]))
]
sender_to_flow_times_by_burst = {}
for sender in burst_to_sender_to_flow_times[0].keys():
sender_flow_times_by_burst = []
for burst_idx in range(len(burst_to_sender_to_flow_times)):
sender_flow_times_by_burst.append(
burst_to_sender_to_flow_times[burst_idx][sender]
)
sender_to_flow_times_by_burst[sender] = sender_flow_times_by_burst
return sender_to_flow_times_by_burst
def get_sender_to_flow_times_by_burst(exp_dir):
with open(
path.join(exp_dir, "logs", "flow_times.json"), "r", encoding="utf-8"
) as fil:
return parse_flow_times(json.load(fil))
def get_active_flows_by_burst(sender_to_flow_times_by_burst, num_bursts):
active_flows_by_burst = []
for burst_idx in range(num_bursts):
times = [
flow_times_by_burst[burst_idx]
for flow_times_by_burst in sender_to_flow_times_by_burst.values()
]
starts, _, ends, _ = zip(*times)
serialized = [(start, 1) for start in starts] + [(end, -1) for end in ends]
serialized = sorted(serialized, key=lambda p: p[0])
active = [serialized[0]]
for time, action in serialized[1:]:
active.append((time, active[-1][1] + action))
active_flows_by_burst.append(active)
return active_flows_by_burst
def graph_active_flows(active_flows_by_burst, num_bursts, graph_dir, prefix):
for burst_idx in range(num_bursts):
fig, axes = get_axes()
ax = axes[0]
xs, ys = zip(*active_flows_by_burst[burst_idx])
ax.plot(xs, ys, drawstyle="steps-post", alpha=0.8)
# ax.set_title(
# f"Active flows over time: Burst {burst_idx + 1} of {num_bursts}"
# )
ax.set_xlabel("time (seconds)")
ax.set_ylabel("active flows")
ax.set_ylim(bottom=0)
show(fig)
save(graph_dir, prefix, suffix=f"active_flows_{burst_idx}")
if RUN:
SENDER_TO_FLOW_TIMES_BY_BURST = get_sender_to_flow_times_by_burst(EXP_DIR)
ACTIVE_flowS_BY_BURST = get_active_flows_by_burst(
SENDER_TO_FLOW_TIMES_BY_BURST, NUM_BURSTS
)
graph_active_flows(ACTIVE_flowS_BY_BURST, NUM_BURSTS, GRAPH_DIR, EXP)
# %%
def graph_cdf_of_flow_duration(
sender_to_flow_times_by_burst, num_bursts, graph_dir, prefix
):
for burst_idx in range(num_bursts):
# if burst_idx != num_bursts - 1:
# continue
fig, axes = get_axes(width=3)
ax = axes[0]
times = [
flow_times_by_burst[burst_idx]
for flow_times_by_burst in sender_to_flow_times_by_burst.values()
]
durations = [(end - start) * 1e3 for start, _, end, _ in times]
print(f"min: {min(durations)}, max: {max(durations)}")
count, bins_count = np.histogram(durations, bins=len(durations))
ax.plot(
bins_count[1:], np.cumsum(count / sum(count)), linewidth=LINESIZE, alpha=0.8
)
# ax.set_title(f"CDF of flow duration: Burst {burst_idx + 1} of {num_bursts}", fontsize=FONTSIZE)
ax.set_xlabel("FCT (ms)", fontsize=FONTSIZE)
ax.set_ylabel("CDF", fontsize=FONTSIZE)
ax.tick_params(axis="x", labelsize=FONTSIZE)
ax.tick_params(axis="y", labelsize=FONTSIZE)
ax.set_xticks([5, 10, 15], [5, 10, 15])
ax.set_xlim(left=0)
ax.set_ylim(bottom=0, top=1)
show(fig)
save(graph_dir, prefix, suffix=f"flow_duration_cdf_{burst_idx}")
if RUN:
graph_cdf_of_flow_duration(
SENDER_TO_FLOW_TIMES_BY_BURST, NUM_BURSTS, GRAPH_DIR, EXP
)
# %%
def parse_cwnd_line(line):
parts = line.strip().split(" ")
assert len(parts) == 2
time_sec, cwnd_bytes = parts
time_sec = float(time_sec)
cwnd_bytes = int(cwnd_bytes)
return time_sec, cwnd_bytes
def parse_cwnds(flp):
with open(flp, "r", encoding="utf-8") as fil:
return [parse_cwnd_line(line) for line in fil if line.strip()[0] != "#"]
def parse_sender(flp):
return int(path.basename(flp).split("_")[0][6:])
def get_sender_to_cwnds_by_burst(
exp_dir, burst_times, sender_to_flow_times_by_burst, suffix="cwnd"
):
return {
parse_sender(flp): separate_samples_into_bursts(
# Read all CWND samples for this sender
parse_cwnds(flp),
burst_times,
# Look up the start and end time for this sender
sender_to_flow_times_by_burst[parse_sender(flp)],
filter_on_flow_times=True,
bookend=True,
)
for flp in [
path.join(exp_dir, "logs", fln)
for fln in os.listdir(path.join(exp_dir, "logs"))
if fln.startswith("sender") and fln.endswith(f"_{suffix}.log")
]
}
def graph_sender_cwnd(
sender_to_cwnds_by_burst, num_bursts, graph_dir, prefix, ylabel="CWND (bytes)"
):
for burst_idx in range(num_bursts):
fig, axes = get_axes()
ax = axes[0]
# ax.set_title(
# f"CWND of active flows: Burst {burst_idx + 1} of {num_bursts}"
# )
ax.set_xlabel("time (seconds)")
ax.set_ylabel(ylabel)
for sender, bursts in sender_to_cwnds_by_burst.items():
if not bursts[burst_idx]:
continue
xs, ys = zip(*bursts[burst_idx])
ax.plot(xs, ys, label=sender, drawstyle="steps-post", alpha=0.8)
ax.set_ylim(bottom=0)
show(fig)
save(graph_dir, prefix, suffix=f"cwnd_{burst_idx}")
if RUN:
SENDER_TO_CWNDS_BY_BURST = get_sender_to_cwnds_by_burst(
EXP_DIR, BURST_TIMES, SENDER_TO_FLOW_TIMES_BY_BURST
)
graph_sender_cwnd(SENDER_TO_CWNDS_BY_BURST, NUM_BURSTS, GRAPH_DIR, EXP)
# %%
def get_sender_to_inflight_by_burst(
exp_dir, burst_times, sender_to_flow_times_by_burst
):
return get_sender_to_cwnds_by_burst(
exp_dir, burst_times, sender_to_flow_times_by_burst, suffix="bytes_in_flight"
)
def graph_sender_inflight(sender_to_inflight_by_burst, num_bursts, graph_dir, prefix):
graph_sender_cwnd(
sender_to_inflight_by_burst,
num_bursts,
graph_dir,
prefix,
ylabel="in-flight data (bytes)",
)
if RUN:
SENDER_TO_INFLIGHT_BY_BURST = get_sender_to_inflight_by_burst(
EXP_DIR, BURST_TIMES, SENDER_TO_FLOW_TIMES_BY_BURST
)
graph_sender_inflight(SENDER_TO_INFLIGHT_BY_BURST, NUM_BURSTS, GRAPH_DIR, EXP)
# %% editable=true slideshow={"slide_type": ""}
# Inspired by https://stackoverflow.com/questions/10058227/calculating-mean-of-arrays-with-different-lengths
def tolerant_metrics(xs, arrays, percentiles):
# Map x value to index. Used to quickly determine where each array starts
# relative to the overall xs.
xs_map = {
# Do not need to do round(x, decimal_places) because xs are already at
# intervals of 1 / interp_delta.
x: idx
for idx, x in enumerate(xs)
}
# Create 2d array to fit the largest array
combined_2d = np.ma.empty((len(xs), len(arrays)))
combined_2d.mask = True
for idx, array in enumerate(arrays):
# Look up this array's start position
# Do not need to do round(x, decimal_places) because xs are already at
# intervals of 1 / interp_delta.
start_idx = xs_map[array[0][0]]
source = array[: (len(combined_2d) - start_idx)]
if len(array) != len(source):
print(f"Warning: Dropping {len(array) - len(source)} samples!")
# Verify alignment.
assert xs[start_idx] == source[0][0]
assert xs[start_idx + len(source) - 1] == source[-1][0]
# combined_2d[start_idx : start_idx + len(array), idx] = list(zip(*array))[1]
source = list(zip(*source))[1]
combined_2d[start_idx : start_idx + len(array), idx] = source
return (
combined_2d.mean(axis=-1),
combined_2d.std(axis=-1),
combined_2d.min(axis=-1),
combined_2d.max(axis=-1),
np.nanpercentile(
np.ma.filled(np.ma.masked_where(combined_2d < 0, combined_2d), np.nan),
percentiles,
axis=-1,
),
combined_2d.sum(axis=-1),
)
def step_interp(old_xs, old_ys, new_xs):
# Lengths must be nonzero and agree.
assert len(old_xs) > 0
assert len(old_ys) > 0
assert len(new_xs) > 0
assert len(old_xs) == len(old_ys)
# xs must be strictly non-decreasing.
assert (np.diff(old_xs) >= 0).all(), np.diff(old_xs)
assert (np.diff(new_xs) >= 0).all()
# This is strictly interpolation, not extrapolation.
assert new_xs[0] >= old_xs[0]
assert new_xs[-1] <= old_xs[-1]
new_ys = np.empty(len(new_xs))
# Points to the next value in xs and ys that is past the current x we are
# interpolating.
old_idx = 0
for new_idx, new_x in enumerate(new_xs):
# Move old_idx forward until it is at a position where the next element
# in old_xs is strictly greater than new_x.
#
# old_idx will never grow larger than len(old_xs) - 2
while old_idx < len(old_xs) - 2 and new_x >= old_xs[old_idx + 1]:
old_idx += 1
# If old_idx is immediately before the last element in old_xs, then
# check manually if we need to advance old_idx to the last element in
# old_xs.
if old_idx == len(old_xs) - 2:
if new_x >= old_xs[len(old_xs) - 1]:
old_idx += 1
new_ys[new_idx] = old_ys[old_idx]
assert len(new_xs) == len(new_ys)
return new_ys
def interpolate_flows_for_burst(
sender_to_x_by_burst, sender_to_x_by_burst_interp, burst_idx, interp_delta
):
# Interpolate each flow at uniform intervals.
for sender, bursts in sender_to_x_by_burst.items():
if bursts[burst_idx]:
assert len(bursts[burst_idx]) > 0
new_xs = get_aligned_xs(
bursts[burst_idx][0][0], bursts[burst_idx][-1][0], interp_delta
)
if len(new_xs) == 0:
new_ys = np.empty(0)
else:
new_ys = step_interp(*zip(*bursts[burst_idx]), new_xs)
else:
new_xs = np.empty(0)
new_ys = np.empty(0)
sender_to_x_by_burst_interp[sender].append(list(zip(new_xs, new_ys)))
def get_sender_to_x_by_burst_interp(sender_to_x_by_burst, num_bursts, interp_delta):
sender_to_x_by_burst_interp = collections.defaultdict(list)
for burst_idx in range(num_bursts):
interpolate_flows_for_burst(
sender_to_x_by_burst,
sender_to_x_by_burst_interp,
burst_idx,
interp_delta,
)
for bursts_interp in sender_to_x_by_burst_interp.values():
assert len(bursts_interp) == num_bursts
return sender_to_x_by_burst_interp
def get_metrics(
sender_to_x_by_burst_interp,
burst_idx,
interp_delta,
percentiles,
):
# Extract the desired burst from each sender.
# Throw away senders that do not have any samples for this burst.
valid_senders = [
bursts[burst_idx]
for bursts in sender_to_x_by_burst_interp.values()
if bursts[burst_idx]
]
if len(valid_senders) != len(sender_to_x_by_burst_interp):
print(
f"Warning: Burst {burst_idx} has only "
f"{len(valid_senders)}/{len(sender_to_x_by_burst_interp)} "
"senders with at least one sample."
)
return get_metrics_helper(valid_senders, interp_delta, percentiles)
def get_metrics_helper(
senders,
interp_delta,
percentiles,
):
# senders is an array of data for burst i, with one element (subarray) for each
# sender:
# senders = [
# [ samples from burst i for sender 0 ],
# ... ,
# [ samples from burst i for sender n - 1 ]
# ]
# Determine the overall x-axis range for this burst, across all valid senders.
# print("max from senders:", max(samples[-1][0] for samples in senders))
xs = get_aligned_xs(
min(samples[0][0] for samples in senders),
max(samples[-1][0] for samples in senders),
interp_delta,
)
# print("max from aligned xs:", xs[-1])
# print(", ".join(str(z) for z in list(zip(*senders[5]))[0]))
# Calculate and verify metrics.
avg_ys, stdev_ys, min_ys, max_ys, percentiles_ys, sum_ys = tolerant_metrics(
xs, senders, percentiles
)
assert len(xs) == len(avg_ys)
assert len(xs) == len(stdev_ys)
assert len(xs) == len(min_ys)
assert len(xs) == len(max_ys)
assert len(xs) == percentiles_ys.shape[1]
assert len(xs) == len(sum_ys)
return xs, avg_ys, stdev_ys, min_ys, max_ys, percentiles_ys, sum_ys
def get_metrics_by_burst(
sender_to_x_by_burst_interp, num_bursts, interp_delta, percentiles
):
return [
get_metrics(
sender_to_x_by_burst_interp,
burst_idx,
interp_delta,
percentiles,
)
for burst_idx in range(num_bursts)
]
def graph_cwnd_metrics(
cwnd_metrics_by_burst,
num_bursts,
percentiles,
graph_dir,
prefix,
ylabel="CWND (bytes)",
fln="cwnd_analysis",
):
for burst_idx in range(num_bursts):
xs, avg_ys, stdev_ys, min_ys, max_ys, percentiles_ys, _ = cwnd_metrics_by_burst[
burst_idx
]
# Left graph
fig, axes = get_axes()
ax = axes[0]
ax.fill_between(xs, min_ys, max_ys, alpha=0.25, label="min/max")
ax.fill_between(
xs, avg_ys - stdev_ys, avg_ys + stdev_ys, alpha=0.5, label="avg +/- stdev"
)
ax.plot(xs, avg_ys, label="avg", alpha=0.8)
# ax.set_title(
# f"CWND of active flows: Burst {burst_idx + 1} of {num_bursts}"
# )
ax.set_xlabel("time (seconds)")
ax.set_ylabel(ylabel)
ax.set_ylim(bottom=0)
ax.legend()
show(fig)
save(graph_dir, prefix, suffix=f"{fln}_{burst_idx}_0")
# Right graph
fig, axes = get_axes()
ax = axes[0]
ax.plot(xs, avg_ys, label="avg", alpha=0.8)
# Bottom of lowest bar is percentiles[0], which is designed to be the min (p0).
for idx in range(1, percentiles_ys.shape[0]):
ax.fill_between(
xs,
percentiles_ys[idx - 1],
percentiles_ys[idx],
alpha=0.5,
label=f"p{percentiles[idx]}",
)
# ax.set_title(
# f"CWND of active flows: Burst {burst_idx + 1} of {num_bursts}"
# )
ax.set_xlabel("time (seconds)")
ax.set_ylabel(ylabel)
ax.set_ylim(bottom=0)
ax.legend()
show(fig)
save(graph_dir, prefix, suffix=f"{fln}_{burst_idx}_1")
if RUN:
INTERP_DELTA = 1e5
PERCENTILES = [0, 25, 50, 75, 95, 100]
SENDER_TO_CWNDS_BY_BURST_INTERP = get_sender_to_x_by_burst_interp(
SENDER_TO_CWNDS_BY_BURST, NUM_BURSTS, INTERP_DELTA
)
CWND_METRICS_BY_BURST = get_metrics_by_burst(
SENDER_TO_CWNDS_BY_BURST_INTERP, NUM_BURSTS, INTERP_DELTA, PERCENTILES
)
graph_cwnd_metrics(
CWND_METRICS_BY_BURST,