@@ -35,7 +35,7 @@ test_that("epi_slide_opt_archive_one_epikey works as expected", {
35
35
),
36
36
tibble(
37
37
version = 13 , time_value = 8 : 10 , value = c(9 , 9 , 10 ),
38
- slide_value = frollmean(c(6 , 7 , 9 , 9 , 10 ), 3 , algo = " exact" )[- (1 : 2 )]
38
+ slide_value = frollmean(c(6 , 7 , 9 , 9 , 10 ), 3 , algo = " exact" )[- (1 : 2 )]
39
39
),
40
40
tibble(
41
41
version = 14 , time_value = 11 : 13 , value = c(NA , 12 , 13 ), slide_value = rep(NA_real_ , 3L )
@@ -89,7 +89,6 @@ test_that("epi_slide_opt.epi_archive is not confused by unique(DT$version) unsor
89
89
})
90
90
91
91
test_that(" epi_slide_opt.epi_archive is not confused by unique(DT$time_value) unsorted" , {
92
-
93
92
start_date <- as.Date(" 2020-01-01" )
94
93
tibble(
95
94
geo_value = c(1 , 1 , 2 , 2 ),
@@ -109,26 +108,67 @@ test_that("epi_slide_opt.epi_archive is not confused by unique(DT$time_value) un
109
108
) %> %
110
109
as_epi_archive()
111
110
)
112
-
113
111
})
114
112
115
- test_that(" epi_slide_opt.epi_archive is equivalent to epix_slide reconversion on example data" , {
116
-
117
- case_death_rate_archive %> %
118
- epi_slide_opt(case_rate , frollmean , .window_size = 7
119
- # , algo = "exact"
120
- ) %> %
121
- . $ DT %> %
122
- as.data.frame() %> %
123
- as_tibble() %> %
124
- filter(! approx_equal(case_rate_7dav , case_rate_7d_av , 1e-6 , TRUE )) %> %
125
- dplyr :: transmute(version , geo_value , time_value , case_rate_7dav , case_rate_7d_av ,
126
- abs_diff = abs(case_rate_7dav - case_rate_7d_av )) %> %
127
- {}
128
-
129
- # TODO finish tests on example data sets
130
-
131
- })
113
+ # test_that("epi_slide_opt.epi_archive gives expected results on example data", {
114
+ # # vs. built-in case_rate_7d_av column:
115
+
116
+ # case_death_rate_archive_time <- system.time(
117
+ # case_death_rate_archive_result <- case_death_rate_archive %>%
118
+ # {
119
+ # as_tibble(as.data.frame(.$DT))
120
+ # } %>%
121
+ # select(-case_rate_7d_av) %>%
122
+ # as_epi_archive() %>%
123
+ # epi_slide_opt(case_rate, frollmean, .window_size = 7, .suffix = "_{.n}d_av")
124
+ # )
125
+
126
+ # case_death_rate_archive_expected <- case_death_rate_archive %>%
127
+ # {
128
+ # as_tibble(as.data.frame(.$DT))
129
+ # } %>%
130
+ # relocate(case_rate_7d_av, .after = last_col()) %>%
131
+ # as_epi_archive() # ensure compact
132
+
133
+ # expect_equal(case_death_rate_archive_result, case_death_rate_archive_expected)
134
+
135
+ # # vs. computing via epix_slide:
136
+
137
+ # mini_case_death_rate_archive <- case_death_rate_archive %>%
138
+ # {
139
+ # as_tibble(as.data.frame(.$DT))
140
+ # } %>%
141
+ # filter(geo_value %in% head(unique(geo_value), 4L)) %>%
142
+ # as_epi_archive()
143
+
144
+ # mini_case_death_rate_archive_time_opt <- system.time(
145
+ # mini_case_death_rate_archive_result <- mini_case_death_rate_archive %>%
146
+ # epi_slide_opt(percent_cli, frollmean, .window_size = 7)
147
+ # )
148
+
149
+ # mini_case_death_rate_archive_time_gen <- system.time(
150
+ # mini_case_death_rate_archive_expected <- mini_case_death_rate_archive %>%
151
+ # epix_slide(~ .x %>% epi_slide_opt(percent_cli, frollmean, .window_size = 7)) %>%
152
+ # select(geo_value, time_value, version, everything()) %>%
153
+ # as_epi_archive()
154
+ # )
155
+
156
+ # expect_equal(mini_case_death_rate_archive_result, mini_case_death_rate_archive_expected)
157
+
158
+ # archive_cases_dv_subset_time_opt <- system.time(
159
+ # archive_cases_dv_subset_result <- archive_cases_dv_subset %>%
160
+ # epi_slide_opt(percent_cli, frollmean, .window_size = 7)
161
+ # )
162
+
163
+ # archive_cases_dv_subset_time_gen <- system.time(
164
+ # archive_cases_dv_subset_expected <- archive_cases_dv_subset %>%
165
+ # epix_slide(~ .x %>% epi_slide_opt(percent_cli, frollmean, .window_size = 7)) %>%
166
+ # select(geo_value, time_value, version, everything()) %>%
167
+ # as_epi_archive()
168
+ # )
169
+
170
+ # expect_equal(archive_cases_dv_subset_result, archive_cases_dv_subset_expected)
171
+ # })
132
172
133
173
134
174
# TODO grouped behavior checks
0 commit comments