Skip to content

Commit 2e694e5

Browse files
authored
Merge pull request #434 from cmu-delphi/ndefries/epi_slide-share-docs
Move some documentation to templates for easier updating
2 parents 00c0a85 + d54dd87 commit 2e694e5

22 files changed

+321
-329
lines changed

R/epi_df.R

+2-38
Original file line numberDiff line numberDiff line change
@@ -91,25 +91,7 @@ NULL
9191
#' correct metadata for an `epi_df` object (ie. `geo_type`, `time_type`, and `as_of`).
9292
#' Refer to the below info. about the arguments for more details.
9393
#'
94-
#' @param x A data.frame, [tibble::tibble], or [tsibble::tsibble] to be converted
95-
#' @param geo_type Type for the geo values. If missing, then the function will
96-
#' attempt to infer it from the geo values present; if this fails, then it
97-
#' will be set to "custom".
98-
#' @param time_type Type for the time values. If missing, then the function will
99-
#' attempt to infer it from the time values present; if this fails, then it
100-
#' will be set to "custom".
101-
#' @param as_of Time value representing the time at which the given data were
102-
#' available. For example, if `as_of` is January 31, 2022, then the `epi_df`
103-
#' object that is created would represent the most up-to-date version of the
104-
#' data available as of January 31, 2022. If the `as_of` argument is missing,
105-
#' then the current day-time will be used.
106-
#' @param additional_metadata List of additional metadata to attach to the
107-
#' `epi_df` object. The metadata will have `geo_type`, `time_type`, and
108-
#' `as_of` fields; named entries from the passed list will be included as
109-
#' well. If your tibble has additional keys, be sure to specify them as a
110-
#' character vector in the `other_keys` component of `additional_metadata`.
111-
#' @param ... Additional arguments passed to methods.
112-
#' @return An `epi_df` object.
94+
#' @template epi_df-params
11395
#'
11496
#' @export
11597
new_epi_df <- function(x = tibble::tibble(), geo_type, time_type, as_of,
@@ -182,25 +164,7 @@ new_epi_df <- function(x = tibble::tibble(), geo_type, time_type, as_of,
182164
#' guide](https://cmu-delphi.github.io/epiprocess/articles/epiprocess.html) for
183165
#' examples.
184166
#'
185-
#' @param x A data.frame, [tibble::tibble], or [tsibble::tsibble] to be converted
186-
#' @param geo_type Type for the geo values. If missing, then the function will
187-
#' attempt to infer it from the geo values present; if this fails, then it
188-
#' will be set to "custom".
189-
#' @param time_type Type for the time values. If missing, then the function will
190-
#' attempt to infer it from the time values present; if this fails, then it
191-
#' will be set to "custom".
192-
#' @param as_of Time value representing the time at which the given data were
193-
#' available. For example, if `as_of` is January 31, 2022, then the `epi_df`
194-
#' object that is created would represent the most up-to-date version of the
195-
#' data available as of January 31, 2022. If the `as_of` argument is missing,
196-
#' then the current day-time will be used.
197-
#' @param additional_metadata List of additional metadata to attach to the
198-
#' `epi_df` object. The metadata will have `geo_type`, `time_type`, and
199-
#' `as_of` fields; named entries from the passed list will be included as
200-
#' well. If your tibble has additional keys, be sure to specify them as a
201-
#' character vector in the `other_keys` component of `additional_metadata`.
202-
#' @param ... Additional arguments passed to methods.
203-
#' @return An `epi_df` object.
167+
#' @template epi_df-params
204168
#'
205169
#' @export
206170
#' @examples

R/methods-epi_df.R

+9-8
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,8 @@
33
#' Converts an `epi_df` object into a tibble, dropping metadata and any
44
#' grouping.
55
#'
6-
#' @param x an `epi_df`
7-
#' @param ... arguments to forward to `NextMethod()`
6+
#' @template x
7+
#' @param ... additional arguments to forward to `NextMethod()`
88
#'
99
#' @importFrom tibble as_tibble
1010
#' @export
@@ -22,7 +22,7 @@ as_tibble.epi_df <- function(x, ...) {
2222
#' others in the `other_keys` field of the metadata, or else explicitly set.
2323
#'
2424
#' @method as_tsibble epi_df
25-
#' @param x The `epi_df` object.
25+
#' @template x
2626
#' @param key Optional. Any additional keys (other than `geo_value`) to add to
2727
#' the `tsibble`.
2828
#' @param ... additional arguments passed on to `tsibble::as_tsibble()`
@@ -39,8 +39,8 @@ as_tsibble.epi_df <- function(x, key, ...) {
3939
#'
4040
#' Print and summary functions for an `epi_df` object.
4141
#'
42-
#' @param x The `epi_df` object.
43-
#' @param ... Additional arguments passed to methods.
42+
#' @template x
43+
#' @param ... additional arguments to forward to `NextMethod()`
4444
#'
4545
#' @method print epi_df
4646
#' @export
@@ -61,7 +61,7 @@ print.epi_df <- function(x, ...) {
6161
#' Prints a variety of summary statistics about the `epi_df` object, such as
6262
#' the time range included and geographic coverage.
6363
#'
64-
#' @param object The `epi_df` object.
64+
#' @param object an `epi_df`
6565
#' @param ... Additional arguments, for compatibility with `summary()`.
6666
#' Currently unused.
6767
#'
@@ -204,6 +204,7 @@ dplyr_row_slice.epi_df <- function(data, i, ...) {
204204
}
205205

206206
#' @method group_by epi_df
207+
#' @param .data an `epi_df`
207208
#' @rdname print.epi_df
208209
#' @export
209210
group_by.epi_df <- function(.data, ...) {
@@ -223,7 +224,7 @@ ungroup.epi_df <- function(x, ...) {
223224

224225
#' @method group_modify epi_df
225226
#' @rdname print.epi_df
226-
#' @param .data The `epi_df` object.
227+
#' @param .data an `epi_df`
227228
#' @param .f function or formula; see [`dplyr::group_modify`]
228229
#' @param .keep Boolean; see [`dplyr::group_modify`]
229230
#' @export
@@ -233,7 +234,7 @@ group_modify.epi_df <- function(.data, .f, ..., .keep = FALSE) {
233234

234235
#' @method unnest epi_df
235236
#' @rdname print.epi_df
236-
#' @param data The `epi_df` object.
237+
#' @param data an `epi_df`
237238
#' @export
238239
unnest.epi_df <- function(data, ...) {
239240
dplyr::dplyr_reconstruct(NextMethod(), data)

R/outliers.R

+8-49
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,7 @@
66
#' vignette](https://cmu-delphi.github.io/epiprocess/articles/outliers.html) for
77
#' examples.
88
#'
9-
#' @param x Design points corresponding to the signal values `y`. Default is
10-
#' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
11-
#' `y`).
12-
#' @param y Signal values.
9+
#' @template x-y
1310
#' @param methods A tibble specifying the method(s) to use for outlier
1411
#' detection, with one row per method, and the following columns:
1512
#' * `method`: Either "rm" or "stl", or a custom function for outlier
@@ -25,9 +22,7 @@
2522
#' summarized results are calculated. Note that if the number of `methods`
2623
#' (number of rows) is odd, then "median" is equivalent to a majority vote for
2724
#' purposes of determining whether a given observation is an outlier.
28-
#' @return An tibble with number of rows equal to `length(y)` and columns giving
29-
#' the outlier detection thresholds and replacement values from each detection
30-
#' method.
25+
#' @template detect-outlr-return
3126
#'
3227
#' @details Each outlier detection method, one per row of the passed `methods`
3328
#' tibble, is a function that must take as its first two arguments `x` and
@@ -147,32 +142,14 @@ detect_outlr <- function(x = seq_along(y), y,
147142
#' Detects outliers based on a distance from the rolling median specified in
148143
#' terms of multiples of the rolling interquartile range (IQR).
149144
#'
150-
#' @param x Design points corresponding to the signal values `y`. Default is
151-
#' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
152-
#' `y`).
153-
#' @param y Signal values.
145+
#' @template x-y
154146
#' @param n Number of time steps to use in the rolling window. Default is 21.
155147
#' This value is centrally aligned. When `n` is an odd number, the rolling
156148
#' window extends from `(n-1)/2` time steps before each design point to `(n-1)/2`
157149
#' time steps after. When `n` is even, then the rolling range extends from
158150
#' `n/2-1` time steps before to `n/2` time steps after.
159-
#' @param log_transform Should a log transform be applied before running outlier
160-
#' detection? Default is `FALSE`. If `TRUE`, and zeros are present, then the
161-
#' log transform will be padded by 1.
162-
#' @param detect_negatives Should negative values automatically count as
163-
#' outliers? Default is `FALSE`.
164-
#' @param detection_multiplier Value determining how far the outlier detection
165-
#' thresholds are from the rolling median, which are calculated as (rolling
166-
#' median) +/- (detection multiplier) * (rolling IQR). Default is 2.
167-
#' @param min_radius Minimum distance between rolling median and threshold, on
168-
#' transformed scale. Default is 0.
169-
#' @param replacement_multiplier Value determining how far the replacement
170-
#' values are from the rolling median. The replacement is the original value
171-
#' if it is within the detection thresholds, or otherwise it is rounded to the
172-
#' nearest (rolling median) +/- (replacement multiplier) * (rolling IQR).
173-
#' Default is 0.
174-
#' @return A tibble with number of rows equal to `length(y)`, and columns
175-
#' `lower`, `upper`, and `replacement`.
151+
#' @template outlier-detection-options
152+
#' @template detect-outlr-return
176153
#'
177154
#' @export
178155
#' @examples
@@ -235,10 +212,7 @@ detect_outlr_rm <- function(x = seq_along(y), y, n = 21,
235212
#'
236213
#' Detects outliers based on a seasonal-trend decomposition using LOESS (STL).
237214
#'
238-
#' @param x Design points corresponding to the signal values `y`. Default is
239-
#' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
240-
#' `y`).
241-
#' @param y Signal values.
215+
#' @template x-y
242216
#' @param n_trend Number of time steps to use in the rolling window for trend.
243217
#' Default is 21.
244218
#' @param n_seasonal Number of time steps to use in the rolling window for
@@ -248,23 +222,8 @@ detect_outlr_rm <- function(x = seq_along(y), y, n = 21,
248222
#' @param seasonal_period Integer specifying period of seasonality. For example,
249223
#' for daily data, a period 7 means weekly seasonality. The default is `NULL`,
250224
#' meaning that no seasonal term will be included in the STL decomposition.
251-
#' @param log_transform Should a log transform be applied before running outlier
252-
#' detection? Default is `FALSE`. If `TRUE`, and zeros are present, then the
253-
#' log transform will be padded by 1.
254-
#' @param detect_negatives Should negative values automatically count as
255-
#' outliers? Default is `FALSE`.
256-
#' @param detection_multiplier Value determining how far the outlier detection
257-
#' thresholds are from the rolling median, which are calculated as (rolling
258-
#' median) +/- (detection multiplier) * (rolling IQR). Default is 2.
259-
#' @param min_radius Minimum distance between rolling median and threshold, on
260-
#' transformed scale. Default is 0.
261-
#' @param replacement_multiplier Value determining how far the replacement
262-
#' values are from the rolling median. The replacement is the original value
263-
#' if it is within the detection thresholds, or otherwise it is rounded to the
264-
#' nearest (rolling median) +/- (replacement multiplier) * (rolling IQR).
265-
#' Default is 0.
266-
#' @return A tibble with number of rows equal to `length(y)`, and columns
267-
#' `lower`, `upper`, and `replacement`.
225+
#' @template outlier-detection-options
226+
#' @template detect-outlr-return
268227
#'
269228
#' @details The STL decomposition is computed using the `feasts` package. Once
270229
#' computed, the outlier detection method is analogous to the rolling median

0 commit comments

Comments
 (0)