6
6
# ' vignette](https://cmu-delphi.github.io/epiprocess/articles/outliers.html) for
7
7
# ' examples.
8
8
# '
9
- # ' @param x Design points corresponding to the signal values `y`. Default is
10
- # ' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
11
- # ' `y`).
12
- # ' @param y Signal values.
9
+ # ' @template x-y
13
10
# ' @param methods A tibble specifying the method(s) to use for outlier
14
11
# ' detection, with one row per method, and the following columns:
15
12
# ' * `method`: Either "rm" or "stl", or a custom function for outlier
25
22
# ' summarized results are calculated. Note that if the number of `methods`
26
23
# ' (number of rows) is odd, then "median" is equivalent to a majority vote for
27
24
# ' purposes of determining whether a given observation is an outlier.
28
- # ' @return An tibble with number of rows equal to `length(y)` and columns giving
29
- # ' the outlier detection thresholds and replacement values from each detection
30
- # ' method.
25
+ # ' @template detect-outlr-return
31
26
# '
32
27
# ' @details Each outlier detection method, one per row of the passed `methods`
33
28
# ' tibble, is a function that must take as its first two arguments `x` and
@@ -147,32 +142,14 @@ detect_outlr <- function(x = seq_along(y), y,
147
142
# ' Detects outliers based on a distance from the rolling median specified in
148
143
# ' terms of multiples of the rolling interquartile range (IQR).
149
144
# '
150
- # ' @param x Design points corresponding to the signal values `y`. Default is
151
- # ' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
152
- # ' `y`).
153
- # ' @param y Signal values.
145
+ # ' @template x-y
154
146
# ' @param n Number of time steps to use in the rolling window. Default is 21.
155
147
# ' This value is centrally aligned. When `n` is an odd number, the rolling
156
148
# ' window extends from `(n-1)/2` time steps before each design point to `(n-1)/2`
157
149
# ' time steps after. When `n` is even, then the rolling range extends from
158
150
# ' `n/2-1` time steps before to `n/2` time steps after.
159
- # ' @param log_transform Should a log transform be applied before running outlier
160
- # ' detection? Default is `FALSE`. If `TRUE`, and zeros are present, then the
161
- # ' log transform will be padded by 1.
162
- # ' @param detect_negatives Should negative values automatically count as
163
- # ' outliers? Default is `FALSE`.
164
- # ' @param detection_multiplier Value determining how far the outlier detection
165
- # ' thresholds are from the rolling median, which are calculated as (rolling
166
- # ' median) +/- (detection multiplier) * (rolling IQR). Default is 2.
167
- # ' @param min_radius Minimum distance between rolling median and threshold, on
168
- # ' transformed scale. Default is 0.
169
- # ' @param replacement_multiplier Value determining how far the replacement
170
- # ' values are from the rolling median. The replacement is the original value
171
- # ' if it is within the detection thresholds, or otherwise it is rounded to the
172
- # ' nearest (rolling median) +/- (replacement multiplier) * (rolling IQR).
173
- # ' Default is 0.
174
- # ' @return A tibble with number of rows equal to `length(y)`, and columns
175
- # ' `lower`, `upper`, and `replacement`.
151
+ # ' @template outlier-detection-options
152
+ # ' @template detect-outlr-return
176
153
# '
177
154
# ' @export
178
155
# ' @examples
@@ -235,10 +212,7 @@ detect_outlr_rm <- function(x = seq_along(y), y, n = 21,
235
212
# '
236
213
# ' Detects outliers based on a seasonal-trend decomposition using LOESS (STL).
237
214
# '
238
- # ' @param x Design points corresponding to the signal values `y`. Default is
239
- # ' `seq_along(y)` (that is, equally-spaced points from 1 to the length of
240
- # ' `y`).
241
- # ' @param y Signal values.
215
+ # ' @template x-y
242
216
# ' @param n_trend Number of time steps to use in the rolling window for trend.
243
217
# ' Default is 21.
244
218
# ' @param n_seasonal Number of time steps to use in the rolling window for
@@ -248,23 +222,8 @@ detect_outlr_rm <- function(x = seq_along(y), y, n = 21,
248
222
# ' @param seasonal_period Integer specifying period of seasonality. For example,
249
223
# ' for daily data, a period 7 means weekly seasonality. The default is `NULL`,
250
224
# ' meaning that no seasonal term will be included in the STL decomposition.
251
- # ' @param log_transform Should a log transform be applied before running outlier
252
- # ' detection? Default is `FALSE`. If `TRUE`, and zeros are present, then the
253
- # ' log transform will be padded by 1.
254
- # ' @param detect_negatives Should negative values automatically count as
255
- # ' outliers? Default is `FALSE`.
256
- # ' @param detection_multiplier Value determining how far the outlier detection
257
- # ' thresholds are from the rolling median, which are calculated as (rolling
258
- # ' median) +/- (detection multiplier) * (rolling IQR). Default is 2.
259
- # ' @param min_radius Minimum distance between rolling median and threshold, on
260
- # ' transformed scale. Default is 0.
261
- # ' @param replacement_multiplier Value determining how far the replacement
262
- # ' values are from the rolling median. The replacement is the original value
263
- # ' if it is within the detection thresholds, or otherwise it is rounded to the
264
- # ' nearest (rolling median) +/- (replacement multiplier) * (rolling IQR).
265
- # ' Default is 0.
266
- # ' @return A tibble with number of rows equal to `length(y)`, and columns
267
- # ' `lower`, `upper`, and `replacement`.
225
+ # ' @template outlier-detection-options
226
+ # ' @template detect-outlr-return
268
227
# '
269
228
# ' @details The STL decomposition is computed using the `feasts` package. Once
270
229
# ' computed, the outlier detection method is analogous to the rolling median
0 commit comments