Skip to content

add_shifted_columns can produce grouped output that is passed through subsequent steps #413

@brookslogan

Description

@brookslogan

See the logic here:

  processed <- new_data %>%
    full_join(shifted, by = ok) %>%
    group_by(across(all_of(kill_time_value(ok)))) %>%
    arrange(time_value)
  if (inherits(new_data, "epi_df")) {
    processed <- processed %>%
      ungroup() %>%
      as_epi_df(
        as_of = attributes(new_data)$metadata$as_of,
        other_keys = attributes(new_data)$metadata$other_keys
      )
  }

And we do appear to have non-epi_dfs when baking:

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(epiprocess)
#> Registered S3 method overwritten by 'tsibble':
#>   method               from 
#>   as_tibble.grouped_df dplyr
#> 
#> Attaching package: 'epiprocess'
#> The following object is masked from 'package:stats':
#> 
#>     filter
library(epipredict)
#> Loading required package: parsnip
#> Registered S3 method overwritten by 'epipredict':
#>   method            from   
#>   print.step_naomit recipes
trace(prep, quote({print(class(x));print(class(list(...)$training))}))
#> Tracing function "prep" in package "epipredict"
#> [1] "prep"
trace(bake, quote({print(class(object));print(class(list(...)$new_data))}))
#> Tracing function "bake" in package "epipredict"
#> [1] "bake"
jhu <- case_death_rate_subset %>%
  dplyr::filter(time_value >= as.Date("2021-12-01"))
out <- arx_forecaster(
  jhu, "death_rate",
  c("case_rate", "death_rate")
)
#> Tracing recipes::prep(blueprint$recipe, training = training, fresh = blueprint$fresh,  .... on entry 
#> [1] "epi_recipe" "recipe"    
#> [1] "epi_df"     "tbl_df"     "tbl"        "data.frame"
#> Tracing recipes::bake(object = rec, new_data = new_data) on entry 
#> [1] "epi_recipe" "recipe"    
#> [1] "tbl_df"     "tbl"        "data.frame"
#> Tracing bake(step, new_data = new_data) on entry 
#> [1] "step_epi_lag" "step"        
#> [1] "tbl_df"     "tbl"        "data.frame"
#> Tracing bake(step, new_data = new_data) on entry 
#> [1] "step_epi_lag" "step"        
#> [1] "grouped_df" "tbl_df"     "tbl"        "data.frame"
#> Tracing bake(step, new_data = new_data) on entry 
#> [1] "step_epi_ahead" "step"          
#> [1] "grouped_df" "tbl_df"     "tbl"        "data.frame"
#> Tracing bake(step, new_data = new_data) on entry 
#> [1] "step_naomit" "step"       
#> [1] "grouped_df" "tbl_df"     "tbl"        "data.frame"

Created on 2024-10-16 with reprex v2.1.1

The steps after the lags&aheads here seem like they are the same when grouped vs. ungrouped, so maybe there's no immediate problem in arx_forecaster(). But that won't always be the case.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions