-
Notifications
You must be signed in to change notification settings - Fork 11
Open
Description
See the logic here:
processed <- new_data %>%
full_join(shifted, by = ok) %>%
group_by(across(all_of(kill_time_value(ok)))) %>%
arrange(time_value)
if (inherits(new_data, "epi_df")) {
processed <- processed %>%
ungroup() %>%
as_epi_df(
as_of = attributes(new_data)$metadata$as_of,
other_keys = attributes(new_data)$metadata$other_keys
)
}
And we do appear to have non-epi_dfs when baking:
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(epiprocess)
#> Registered S3 method overwritten by 'tsibble':
#> method from
#> as_tibble.grouped_df dplyr
#>
#> Attaching package: 'epiprocess'
#> The following object is masked from 'package:stats':
#>
#> filter
library(epipredict)
#> Loading required package: parsnip
#> Registered S3 method overwritten by 'epipredict':
#> method from
#> print.step_naomit recipes
trace(prep, quote({print(class(x));print(class(list(...)$training))}))
#> Tracing function "prep" in package "epipredict"
#> [1] "prep"
trace(bake, quote({print(class(object));print(class(list(...)$new_data))}))
#> Tracing function "bake" in package "epipredict"
#> [1] "bake"
jhu <- case_death_rate_subset %>%
dplyr::filter(time_value >= as.Date("2021-12-01"))
out <- arx_forecaster(
jhu, "death_rate",
c("case_rate", "death_rate")
)
#> Tracing recipes::prep(blueprint$recipe, training = training, fresh = blueprint$fresh, .... on entry
#> [1] "epi_recipe" "recipe"
#> [1] "epi_df" "tbl_df" "tbl" "data.frame"
#> Tracing recipes::bake(object = rec, new_data = new_data) on entry
#> [1] "epi_recipe" "recipe"
#> [1] "tbl_df" "tbl" "data.frame"
#> Tracing bake(step, new_data = new_data) on entry
#> [1] "step_epi_lag" "step"
#> [1] "tbl_df" "tbl" "data.frame"
#> Tracing bake(step, new_data = new_data) on entry
#> [1] "step_epi_lag" "step"
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"
#> Tracing bake(step, new_data = new_data) on entry
#> [1] "step_epi_ahead" "step"
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"
#> Tracing bake(step, new_data = new_data) on entry
#> [1] "step_naomit" "step"
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"
Created on 2024-10-16 with reprex v2.1.1
The steps after the lags&aheads here seem like they are the same when grouped vs. ungrouped, so maybe there's no immediate problem in arx_forecaster()
. But that won't always be the case.
Metadata
Metadata
Assignees
Labels
No labels