-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathepi_workflow.R
271 lines (252 loc) · 8.58 KB
/
epi_workflow.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#' Create an epi_workflow
#'
#' This is a container object that unifies preprocessing, fitting, prediction,
#' and postprocessing for predictive modeling on epidemiological data. It extends
#' the functionality of a [workflows::workflow()] to handle the typical panel
#' data structures found in this field. This extension is handled completely
#' internally, and should be invisible to the user. For all intents and purposes,
#' this operates exactly like a [workflows::workflow()]. For more details
#' and numerous examples, see there.
#'
#' @inheritParams workflows::workflow
#' @param postprocessor An optional postprocessor to add to the workflow.
#' Currently only `frosting` is allowed using, `add_frosting()`.
#'
#' @return A new `epi_workflow` object.
#' @seealso workflows::workflow
#' @importFrom rlang is_null
#' @importFrom stats predict
#' @importFrom generics fit
#' @importFrom generics augment
#' @export
#' @examples
#' jhu <- case_death_rate_subset
#'
#' r <- recipe(jhu) %>%
#' step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
#' step_epi_ahead(death_rate, ahead = 7) %>%
#' step_epi_lag(case_rate, lag = c(0, 7, 14)) %>%
#' step_epi_naomit()
#'
#' wf <- epi_workflow(r, parsnip::linear_reg())
#'
#' wf
epi_workflow <- function(preprocessor = NULL, spec = NULL, postprocessor = NULL) {
out <- workflows::workflow(preprocessor = preprocessor, spec = spec)
if (!is_null(postprocessor)) {
out <- add_postprocessor(out, postprocessor)
}
class(out) <- c("epi_workflow", class(out))
out
}
#' Test for an `epi_workflow`
#'
#' @param x An object.
#' @return `TRUE` if the object inherits from `epi_workflow`.
#'
#' @keywords internal
#' @export
is_epi_workflow <- function(x) {
inherits(x, "epi_workflow")
}
#' Fit an `epi_workflow` object
#'
#' @description
#' This is the `fit()` method for an `epi_workflow` object that
#' estimates parameters for a given model from a set of data.
#' Fitting an `epi_workflow` involves two main steps, which are
#' preprocessing the data and fitting the underlying parsnip model.
#'
#' @inheritParams workflows::fit.workflow
#'
#' @param object an `epi_workflow` object
#'
#' @param data an `epi_df` of predictors and outcomes to use when
#' fitting the `epi_workflow`
#'
#' @param control A [workflows::control_workflow()] object
#'
#' @return The `epi_workflow` object, updated with a fit parsnip
#' model in the `object$fit$fit` slot.
#'
#' @seealso workflows::fit-workflow
#'
#' @name fit-epi_workflow
#' @export
#' @examples
#' jhu <- case_death_rate_subset %>%
#' filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
#'
#' r <- recipe(jhu) %>%
#' step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
#' step_epi_ahead(death_rate, ahead = 7)
#'
#' wf <- epi_workflow(r, parsnip::linear_reg()) %>% fit(jhu)
#' wf
#'
#' @export
fit.epi_workflow <- function(object, data, ..., control = workflows::control_workflow()) {
object$fit$meta <- list(
max_time_value = max(data$time_value),
as_of = attributes(data)$metadata$as_of
)
object$original_data <- data
NextMethod()
}
#' Predict from an epi_workflow
#'
#' @description
#' This is the `predict()` method for a fit epi_workflow object. The nice thing
#' about predicting from an epi_workflow is that it will:
#'
#' - Preprocess `new_data` using the preprocessing method specified when the
#' workflow was created and fit. This is accomplished using
#' [hardhat::forge()], which will apply any formula preprocessing or call
#' [recipes::bake()] if a recipe was supplied.
#'
#' - Call [parsnip::predict.model_fit()] for you using the underlying fit
#' parsnip model.
#'
#' - Ensure that the returned object is an [epiprocess::epi_df][epiprocess::as_epi_df] where
#' possible. Specifically, the output will have `time_value` and
#' `geo_value` columns as well as the prediction.
#'
#' @param object An epi_workflow that has been fit by
#' [workflows::fit.workflow()]
#'
#' @param new_data A data frame containing the new predictors to preprocess
#' and predict on
#'
#' @inheritParams parsnip::predict.model_fit
#'
#' @return
#' A data frame of model predictions, with as many rows as `new_data` has.
#' If `new_data` is an `epi_df` or a data frame with `time_value` or
#' `geo_value` columns, then the result will have those as well.
#'
#' @name predict-epi_workflow
#' @export
#' @examples
#' library(dplyr)
#' jhu <- case_death_rate_subset
#'
#' r <- recipe(jhu) %>%
#' step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
#' step_epi_ahead(death_rate, ahead = 7) %>%
#' step_epi_lag(case_rate, lag = c(0, 7, 14)) %>%
#' step_epi_naomit()
#'
#' wf <- epi_workflow(r, linear_reg()) %>% fit(jhu)
#' latest <- jhu %>% filter(time_value >= max(time_value) - 14)
#'
#' preds <- predict(wf, latest)
#' preds
predict.epi_workflow <- function(object, new_data, type = NULL, opts = list(), ...) {
if (!workflows::is_trained_workflow(object)) {
cli::cli_abort(c(
"Can't predict on an untrained epi_workflow.",
i = "Do you need to call `fit()`?"
))
}
components <- list()
components$mold <- workflows::extract_mold(object)
components$forged <- hardhat::forge(
new_data,
blueprint = components$mold$blueprint
)
components$keys <- grab_forged_keys(components$forged, object, new_data)
components <- apply_frosting(
object, components, new_data, type = type, opts = opts, ...
)
components$predictions
}
#' Augment data with predictions
#'
#' @param x A trained epi_workflow
#' @param new_data A epi_df of predictors
#' @param ... Arguments passed on to the predict method.
#'
#' @return new_data with additional columns containing the predicted values
#' @export
augment.epi_workflow <- function(x, new_data, ...) {
predictions <- predict(x, new_data, ...)
if (is_epi_df(predictions)) {
join_by <- key_colnames(predictions)
} else {
cli_abort(c(
"Cannot determine how to join new_data with the predictions.",
"Try converting new_data to an epi_df with `as_epi_df(new_data)`."
))
}
complete_overlap <- intersect(names(new_data), join_by)
if (length(complete_overlap) < length(join_by)) {
rlang::warn(glue::glue(
"Your original training data had keys {join_by}, but",
"`new_data` only has {complete_overlap}. The output",
"may be strange."
))
}
full_join(predictions, new_data, by = join_by)
}
new_epi_workflow <- function(
pre = workflows:::new_stage_pre(),
fit = workflows:::new_stage_fit(),
post = workflows:::new_stage_post(),
trained = FALSE) {
out <- workflows:::new_workflow(
pre = pre, fit = fit, post = post, trained = trained
)
class(out) <- c("epi_workflow", class(out))
out
}
#' @export
print.epi_workflow <- function(x, ...) {
NextMethod()
print_postprocessor(x)
invisible(x)
}
#' Produce a forecast from an epi workflow
#'
#' @param object An epi workflow.
#' @param ... Not used.
#' @param fill_locf Logical. Should we use locf to fill in missing data?
#' @param n_recent Integer or NULL. If filling missing data with locf = TRUE,
#' how far back are we willing to tolerate missing data? Larger values allow
#' more filling. The default NULL will determine this from the the recipe. For
#' example, suppose n_recent = 3, then if the 3 most recent observations in any
#' geo_value are all NA’s, we won’t be able to fill anything, and an error
#' message will be thrown. (See details.)
#' @param forecast_date By default, this is set to the maximum time_value in x.
#' But if there is data latency such that recent NA's should be filled, this may
#' be after the last available time_value.
#'
#' @return A forecast tibble.
#'
#' @export
forecast.epi_workflow <- function(object, ..., fill_locf = FALSE, n_recent = NULL, forecast_date = NULL) {
rlang::check_dots_empty()
if (!object$trained) {
cli_abort(c(
"You cannot `forecast()` a {.cls workflow} that has not been trained.",
i = "Please use `fit()` before forecasting."
))
}
frosting_fd <- NULL
if (has_postprocessor(object) && detect_layer(object, "layer_add_forecast_date")) {
frosting_fd <- extract_argument(object, "layer_add_forecast_date", "forecast_date")
if (!is.null(frosting_fd) && class(frosting_fd) != class(object$original_data$time_value)) {
cli_abort(c(
"Error with layer_add_forecast_date():",
i = "The type of `forecast_date` must match the type of the `time_value` column in the data."
))
}
}
test_data <- get_test_data(
hardhat::extract_preprocessor(object),
object$original_data,
fill_locf = fill_locf,
n_recent = n_recent %||% Inf,
forecast_date = forecast_date %||% frosting_fd %||% max(object$original_data$time_value)
)
predict(object, new_data = test_data)
}