forked from rabbit721/QPPNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
206 lines (168 loc) · 6.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import json
import time
import torch
# from dataset.oltp_dataset.oltp_utils import OLTPDataSet
# from dataset.terrier_tpch_dataset.terrier_utils import TerrierTPCHDataSet
from model_arch import QPPNet
from pg_utils import PostgresDataSet
parser = argparse.ArgumentParser(description="QPPNet Arg Parser")
# Environment arguments required
parser.add_argument(
"--data_dir", type=str, default="./res_by_temp/", help="Dir containing train data"
)
parser.add_argument(
"--dataset",
type=str,
default="POSTGRES",
help="Select dataset [POSTGRES]",
)
parser.add_argument("--test_time", action="store_true", help="if in testing mode")
parser.add_argument(
"--save_dir",
type=str,
default="./saved_model",
help="Dir to save model weights (default: ./saved_model)",
)
parser.add_argument(
"--lr", type=float, default=1e-3, help="Learning rate (default: 1e-3)"
)
parser.add_argument("--scheduler", action="store_true")
parser.add_argument(
"--step_size",
type=int,
default=1000,
help="step_size for StepLR scheduler (default: 1000)",
)
parser.add_argument(
"--gamma", type=float, default=0.95, help="gamma in Adam (default: 0.95)"
)
parser.add_argument(
"--SGD", action="store_true", help="Use SGD as optimizer with momentum 0.9"
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size used in training (default: 32)",
)
parser.add_argument(
"--start_epoch",
type=int,
default=0,
help="Epoch to start training with (default: 0)",
)
parser.add_argument(
"--end_epoch",
type=int,
default=200,
help="Epoch to end training (default: 200)",
)
parser.add_argument("-epoch_freq", "--save_latest_epoch_freq", type=int, default=100)
parser.add_argument("-logf", "--logfile", type=str, default="train_loss.txt")
parser.add_argument("--mean_range_dict", type=str)
parser.add_argument("--db_name", type=str, default="qppnet_db")
parser.add_argument("--db_user", type=str, default="qppnet_user")
parser.add_argument("--db_pass", type=str, default="qppnet_pass")
parser.add_argument(
"--data_shuffle_hack",
action="store_true",
help="True if data shuffle hack should be done to try to avoid empty groups.",
)
def save_opt(opt, logf):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ""
message += "----------------- Options ---------------\n"
for k, v in sorted(vars(opt).items()):
comment = ""
default = parser.get_default(k)
if v != default:
comment = "\t[default: %s]" % str(default)
message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment)
message += "----------------- End -------------------"
print(message)
logf.write(message)
logf.write("\n")
if __name__ == "__main__":
opt = parser.parse_args()
if opt.dataset == "POSTGRES":
dataset = PostgresDataSet(opt)
dim_dict = dataset.db_snapshot.dim_dict
elif opt.dataset == "TerrierTPCH":
raise NotImplementedError("Disabled.")
dataset = TerrierTPCHDataSet(opt)
with open("dataset/terrier_tpch_dataset/input_dim_dict.json", "r") as f:
dim_dict = json.load(f)
else:
raise NotImplementedError("Disabled.")
dataset = OLTPDataSet(opt)
with open("./dataset/oltp_dataset/tpcc_dim_dict.json", "r") as f:
dim_dict = json.load(f)
print("dataset_size", dataset.datasize)
torch.set_default_tensor_type(torch.FloatTensor)
qpp = QPPNet(opt, dim_dict)
total_iter = 0
if opt.test_time:
qpp.evaluate(dataset.all_dataset)
print(
"total_loss: {}; test_loss: {}; pred_err: {}; R(q): {}".format(
qpp.last_total_loss, qpp.last_test_loss, qpp.last_pred_err, qpp.last_rq
)
)
else:
logf = open(opt.logfile, "w+")
save_opt(opt, logf)
# qpp.test_dataset = dataset.create_test_data(opt)
qpp.test_dataset = dataset.test_dataset
for epoch in range(opt.start_epoch, opt.end_epoch):
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
samp_dicts = dataset.sample_data()
total_iter += opt.batch_size
qpp.set_input(samp_dicts)
qpp.optimize_parameters(epoch)
logf.write(
"epoch: "
+ str(epoch)
+ "; iter_num: "
+ str(total_iter)
+ "; total_loss: {}; test_loss: {}; pred_err: {}; R(q): {}".format(
qpp.last_total_loss,
qpp.last_test_loss,
qpp.last_pred_err,
qpp.last_rq,
)
)
# if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = qpp.get_current_losses()
loss_str = "losses: "
for op in losses:
loss_str += str(op) + " [" + str(losses[op]) + "]; "
if epoch % 50 == 0:
print(
"epoch: "
+ str(epoch)
+ "; iter_num: "
+ str(total_iter)
+ "; total_loss: {}; test_loss: {}; pred_err: {}; R(q): {}".format(
qpp.last_total_loss,
qpp.last_test_loss,
qpp.last_pred_err,
qpp.last_rq,
)
)
print(loss_str)
logf.write(loss_str + "\n")
if (
epoch + 1
) % opt.save_latest_epoch_freq == 0: # cache our latest model every <save_latest_freq> iterations
print(
"saving the latest model (epoch %d, total_iters %d)"
% (epoch + 1, total_iter)
)
qpp.save_units(epoch + 1)
logf.close()