1
1
import matplotlib .pyplot as plt
2
- f = open ("log_sample.tsv" ,"r" )
3
- datalist = f .readlines ()
2
+ import sys
4
3
5
- epoch = []
6
- train_cost = []
7
- train_cost_recons = []
8
- train_cost_temp = []
9
- train_cost_pred = []
10
- valid_cost = []
11
- valid_cost_recons = []
12
- valid_cost_temp = []
13
- valid_cost_pred = []
4
+ def plot_loss (loss_txt ,loss_image ):
5
+ f = open (loss_txt ,"r" )
6
+ datalist = f .readlines ()
14
7
15
- for data in datalist [1 :]:
16
- a = data .split ('\t ' )
17
- epoch .append (a [1 ])
18
- train_cost .append (float (a [2 ]))
19
- train_cost_recons .append (float (a [9 ]))
20
- train_cost_temp .append (float (a [10 ])* 0.5 )
21
- train_cost_pred .append (float (a [11 ])* 0.1 )
22
- valid_cost .append (float (a [3 ]))
23
- valid_cost_recons .append (float (a [12 ]))
24
- valid_cost_temp .append (float (a [13 ])* 0.5 )
25
- valid_cost_pred .append (float (a [14 ])* 0.1 )
8
+ epoch = []
9
+ train_cost = []
10
+ train_cost_recons = []
11
+ train_cost_temp = []
12
+ train_cost_pred = []
13
+ valid_cost = []
14
+ valid_cost_recons = []
15
+ valid_cost_temp = []
16
+ valid_cost_pred = []
26
17
27
- plt .style .use ("grayscale" )
28
- fig = plt .figure (figsize = (16.0 ,6.0 ))
29
- ax1 = fig .add_subplot (1 , 2 , 1 )
30
- ax1 .set_title ("train cost" )
31
- ax1 .set_xlabel ("epoch" )
32
- ax1 .set_xlim ([0 ,1000 ])
33
- ax1 .set_ylim ([0.01 ,5.0 ])
34
- ax1 .plot (train_cost ,label = "total" )
35
- ax1 .plot (train_cost_recons ,label = "recons" )
36
- ax1 .plot (train_cost_temp ,label = "alpha*temporal" )
37
- ax1 .plot (train_cost_pred ,label = "beta*prediction" )
38
- ax1 .legend ()
18
+ for data in datalist [1 :]:
19
+ a = data .split ('\t ' )
20
+ epoch .append (a [1 ])
21
+ train_cost .append (float (a [2 ]))
22
+ train_cost_recons .append (float (a [9 ]))
23
+ train_cost_temp .append (float (a [10 ])* 0.5 )
24
+ train_cost_pred .append (float (a [11 ])* 0.1 )
25
+ valid_cost .append (float (a [3 ]))
26
+ valid_cost_recons .append (float (a [12 ]))
27
+ valid_cost_temp .append (float (a [13 ])* 0.5 )
28
+ valid_cost_pred .append (float (a [14 ])* 0.1 )
39
29
40
- ax2 = fig .add_subplot (1 , 2 , 2 )
41
- ax2 .set_title ("valid cost" )
42
- ax2 .set_xlabel ("epoch" )
43
- ax2 .set_xlim ([0 ,1000 ])
44
- ax2 .set_ylim ([0.01 ,5.0 ])
45
- ax2 .plot (train_cost ,label = "total" )
46
- ax2 .plot (train_cost_recons ,label = "recons" )
47
- ax2 .plot (train_cost_temp ,label = "alpha*temporal" )
48
- ax2 .plot (train_cost_pred ,label = "beta*prediction" )
49
- ax2 .legend ()
30
+ plt .style .use ("grayscale" )
31
+ fig = plt .figure (figsize = (16.0 ,6.0 ))
32
+ ax1 = fig .add_subplot (1 , 2 , 1 )
33
+ ax1 .set_title ("train cost" )
34
+ ax1 .set_xlabel ("epoch" )
35
+ ax1 .set_xlim ([0 ,1000 ])
36
+ ax1 .set_ylim ([0.01 ,5.0 ])
37
+ ax1 .plot (train_cost ,label = "total" )
38
+ ax1 .plot (train_cost_recons ,label = "recons" )
39
+ ax1 .plot (train_cost_temp ,label = "alpha*temporal" )
40
+ ax1 .plot (train_cost_pred ,label = "beta*prediction" )
41
+ ax1 .legend ()
50
42
51
- plt .savefig ("plot_loss_sample.png" )
43
+ ax2 = fig .add_subplot (1 , 2 , 2 )
44
+ ax2 .set_title ("valid cost" )
45
+ ax2 .set_xlabel ("epoch" )
46
+ ax2 .set_xlim ([0 ,1000 ])
47
+ ax2 .set_ylim ([0.01 ,5.0 ])
48
+ ax2 .plot (train_cost ,label = "total" )
49
+ ax2 .plot (train_cost_recons ,label = "recons" )
50
+ ax2 .plot (train_cost_temp ,label = "alpha*temporal" )
51
+ ax2 .plot (train_cost_pred ,label = "beta*prediction" )
52
+ ax2 .legend ()
53
+
54
+ plt .savefig (loss_image )
55
+
56
+ if __name__ == '__main__' :
57
+ args = sys .argv
58
+ plot_loss (args [1 ],args [2 ])
0 commit comments