forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprep.py
executable file
·316 lines (237 loc) · 9.43 KB
/
prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
#
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Prepare a corpus for processing by swivel.
Creates a sharded word co-occurrence matrix from a text file input corpus.
Usage:
prep.py --output_dir <output-dir> --input <text-file>
Options:
--input <filename>
The input text.
--output_dir <directory>
Specifies the output directory where the various Swivel data
files should be placed.
--shard_size <int>
Specifies the shard size; default 4096.
--min_count <int>
Specifies the minimum number of times a word should appear
to be included in the vocabulary; default 5.
--max_vocab <int>
Specifies the maximum vocabulary size; default shard size
times 1024.
--vocab <filename>
Use the specified unigram vocabulary instead of generating
it from the corpus.
--window_size <int>
Specifies the window size for computing co-occurrence stats;
default 10.
--bufsz <int>
The number of co-occurrences that are buffered; default 16M.
"""
import itertools
import math
import os
import struct
import sys
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_string('input', '', 'The input text.')
flags.DEFINE_string('output_dir', '/tmp/swivel_data',
'Output directory for Swivel data')
flags.DEFINE_integer('shard_size', 4096, 'The size for each shard')
flags.DEFINE_integer('min_count', 5,
'The minimum number of times a word should occur to be '
'included in the vocabulary')
flags.DEFINE_integer('max_vocab', 4096 * 64, 'The maximum vocabulary size')
flags.DEFINE_string('vocab', '', 'Vocabulary to use instead of generating one')
flags.DEFINE_integer('window_size', 10, 'The window size')
flags.DEFINE_integer('bufsz', 16 * 1024 * 1024,
'The number of co-occurrences to buffer')
FLAGS = flags.FLAGS
shard_cooc_fmt = struct.Struct('iif')
def words(line):
"""Splits a line of text into tokens."""
return line.strip().split()
def create_vocabulary(lines):
"""Reads text lines and generates a vocabulary."""
lines.seek(0, os.SEEK_END)
nbytes = lines.tell()
lines.seek(0, os.SEEK_SET)
vocab = {}
for lineno, line in enumerate(lines, start=1):
for word in words(line):
vocab.setdefault(word, 0)
vocab[word] += 1
if lineno % 100000 == 0:
pos = lines.tell()
sys.stdout.write('\rComputing vocabulary: %0.1f%% (%d/%d)...' % (
100.0 * pos / nbytes, pos, nbytes))
sys.stdout.flush()
sys.stdout.write('\n')
vocab = [(tok, n) for tok, n in vocab.iteritems() if n >= FLAGS.min_count]
vocab.sort(key=lambda kv: (-kv[1], kv[0]))
num_words = min(len(vocab), FLAGS.max_vocab)
if num_words % FLAGS.shard_size != 0:
num_words -= num_words % FLAGS.shard_size
if not num_words:
raise Exception('empty vocabulary')
print 'vocabulary contains %d tokens' % num_words
vocab = vocab[:num_words]
return [tok for tok, n in vocab]
def write_vocab_and_sums(vocab, sums, vocab_filename, sums_filename):
"""Writes vocabulary and marginal sum files."""
with open(os.path.join(FLAGS.output_dir, vocab_filename), 'w') as vocab_out:
with open(os.path.join(FLAGS.output_dir, sums_filename), 'w') as sums_out:
for tok, cnt in itertools.izip(vocab, sums):
print >> vocab_out, tok
print >> sums_out, cnt
def compute_coocs(lines, vocab):
"""Compute the co-occurrence statistics from the text.
This generates a temporary file for each shard that contains the intermediate
counts from the shard: these counts must be subsequently sorted and collated.
"""
word_to_id = {tok: idx for idx, tok in enumerate(vocab)}
lines.seek(0, os.SEEK_END)
nbytes = lines.tell()
lines.seek(0, os.SEEK_SET)
num_shards = len(vocab) / FLAGS.shard_size
shardfiles = {}
for row in range(num_shards):
for col in range(num_shards):
filename = os.path.join(
FLAGS.output_dir, 'shard-%03d-%03d.tmp' % (row, col))
shardfiles[(row, col)] = open(filename, 'w+')
def flush_coocs():
for (row_id, col_id), cnt in coocs.iteritems():
row_shard = row_id % num_shards
row_off = row_id / num_shards
col_shard = col_id % num_shards
col_off = col_id / num_shards
# Since we only stored (a, b), we emit both (a, b) and (b, a).
shardfiles[(row_shard, col_shard)].write(
shard_cooc_fmt.pack(row_off, col_off, cnt))
shardfiles[(col_shard, row_shard)].write(
shard_cooc_fmt.pack(col_off, row_off, cnt))
coocs = {}
sums = [0.0] * len(vocab)
for lineno, line in enumerate(lines, start=1):
# Computes the word IDs for each word in the sentence. This has the effect
# of "stretching" the window past OOV tokens.
wids = filter(
lambda wid: wid is not None,
(word_to_id.get(w) for w in words(line)))
for pos in xrange(len(wids)):
lid = wids[pos]
window_extent = min(FLAGS.window_size + 1, len(wids) - pos)
for off in xrange(1, window_extent):
rid = wids[pos + off]
pair = (min(lid, rid), max(lid, rid))
count = 1.0 / off
sums[lid] += count
sums[rid] += count
coocs.setdefault(pair, 0.0)
coocs[pair] += count
sums[lid] += 1.0
pair = (lid, lid)
coocs.setdefault(pair, 0.0)
coocs[pair] += 0.5 # Only add 1/2 since we output (a, b) and (b, a)
if lineno % 10000 == 0:
pos = lines.tell()
sys.stdout.write('\rComputing co-occurrences: %0.1f%% (%d/%d)...' % (
100.0 * pos / nbytes, pos, nbytes))
sys.stdout.flush()
if len(coocs) > FLAGS.bufsz:
flush_coocs()
coocs = {}
flush_coocs()
sys.stdout.write('\n')
return shardfiles, sums
def write_shards(vocab, shardfiles):
"""Processes the temporary files to generate the final shard data.
The shard data is stored as a tf.Example protos using a TFRecordWriter. The
temporary files are removed from the filesystem once they've been processed.
"""
num_shards = len(vocab) / FLAGS.shard_size
ix = 0
for (row, col), fh in shardfiles.iteritems():
ix += 1
sys.stdout.write('\rwriting shard %d/%d' % (ix, len(shardfiles)))
sys.stdout.flush()
# Read the entire binary co-occurrence and unpack it into an array.
fh.seek(0)
buf = fh.read()
os.unlink(fh.name)
fh.close()
coocs = [
shard_cooc_fmt.unpack_from(buf, off)
for off in range(0, len(buf), shard_cooc_fmt.size)]
# Sort and merge co-occurrences for the same pairs.
coocs.sort()
if coocs:
current_pos = 0
current_row_col = (coocs[current_pos][0], coocs[current_pos][1])
for next_pos in range(1, len(coocs)):
next_row_col = (coocs[next_pos][0], coocs[next_pos][1])
if current_row_col == next_row_col:
coocs[current_pos] = (
coocs[current_pos][0],
coocs[current_pos][1],
coocs[current_pos][2] + coocs[next_pos][2])
else:
current_pos += 1
if current_pos < next_pos:
coocs[current_pos] = coocs[next_pos]
current_row_col = (coocs[current_pos][0], coocs[current_pos][1])
coocs = coocs[:(1 + current_pos)]
# Convert to a TF Example proto.
def _int64s(xs):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(xs)))
def _floats(xs):
return tf.train.Feature(float_list=tf.train.FloatList(value=list(xs)))
example = tf.train.Example(features=tf.train.Features(feature={
'global_row': _int64s(
row + num_shards * i for i in range(FLAGS.shard_size)),
'global_col': _int64s(
col + num_shards * i for i in range(FLAGS.shard_size)),
'sparse_local_row': _int64s(cooc[0] for cooc in coocs),
'sparse_local_col': _int64s(cooc[1] for cooc in coocs),
'sparse_value': _floats(cooc[2] for cooc in coocs),
}))
filename = os.path.join(FLAGS.output_dir, 'shard-%03d-%03d.pb' % (row, col))
with open(filename, 'w') as out:
out.write(example.SerializeToString())
sys.stdout.write('\n')
def main(_):
# Create the output directory, if necessary
if FLAGS.output_dir and not os.path.isdir(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
# Read the file onces to create the vocabulary.
if FLAGS.vocab:
with open(FLAGS.vocab, 'r') as lines:
vocab = [line.strip() for line in lines]
else:
with open(FLAGS.input, 'r') as lines:
vocab = create_vocabulary(lines)
# Now read the file again to determine the co-occurrence stats.
with open(FLAGS.input, 'r') as lines:
shardfiles, sums = compute_coocs(lines, vocab)
# Collect individual shards into the shards.recs file.
write_shards(vocab, shardfiles)
# Now write the marginals. They're symmetric for this application.
write_vocab_and_sums(vocab, sums, 'row_vocab.txt', 'row_sums.txt')
write_vocab_and_sums(vocab, sums, 'col_vocab.txt', 'col_sums.txt')
print 'done!'
if __name__ == '__main__':
tf.app.run()