forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglove_to_shards.py
executable file
·197 lines (144 loc) · 5.74 KB
/
glove_to_shards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
#
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Converts a Glove binary co-occurrence matrix into Swivel shards.
Usage:
glove_to_shards.py --input <coocs> --vocab <vocab> --output_dir <output_dir>
Options
--input <coocs>
The Glove co-occurrence file.
--vocab <vocab>
Path to the vocabulary text file, one token per line.
--output_dir <directory>
Specifies the touput directory where the various Swivel data
files sohuld be placed.
--shard_size <int>
Specifies the shard size; default 4096.
"""
from __future__ import print_function
import itertools
import os
import struct
import sys
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_string('input', 'coocurrences.bin', 'Vocabulary file')
flags.DEFINE_string('vocab', 'vocab.txt', 'Vocabulary file')
flags.DEFINE_string('output_dir', '/tmp/swivel_data', 'Output directory')
flags.DEFINE_integer('shard_size', 4096, 'Shard size')
FLAGS = tf.app.flags.FLAGS
glove_cooc_fmt = struct.Struct('iid')
shard_cooc_fmt = struct.Struct('if')
def make_shard_files(coocs, nshards, vocab_sz):
"""Chops the binary Glove co-occurrence matrix into shards.
This reads the Glove binary co-occurrence file and assigns individual
co-occurrence counts to the appropriate Swivel shard.
Args:
coocs: the co-occurrnece file to read
nshards: the number of shards along one dimension of the square matrix
vocab_sz: the vocabulary size
Returns:
A (shard_table, marginals) tuple. The shard_table maps the row and column
shard ID to a file handle containing the co-occurrences for that shard; the
marginals contain the marginal sums.
"""
row_sums = [0] * vocab_sz
col_sums = [0] * vocab_sz
coocs.seek(0, os.SEEK_END)
ncoocs = coocs.tell() / glove_cooc_fmt.size
coocs.seek(0, os.SEEK_SET)
shard_files = {}
for row in range(nshards):
for col in range(nshards):
filename = os.path.join(
FLAGS.output_dir, 'shard-%03d-%03d.bin' % (row, col))
shard_files[(row, col)] = open(filename, 'w+')
for ix in xrange(ncoocs):
if ix % 1000000 == 0:
sys.stdout.write('\rsharding co-occurrences: %0.1f%% (%d/%d)' % (
100.0 * ix / ncoocs, ix, ncoocs))
sys.stdout.flush()
bits = coocs.read(glove_cooc_fmt.size)
if not bits:
break
# Glove has 1-indexed IDs.
row_id, col_id, cnt = glove_cooc_fmt.unpack(bits)
if row_id > vocab_sz or col_id > vocab_sz:
continue
row_id -= 1
row_shard = row_id % nshards
row_off = row_id / nshards
col_id -= 1
col_shard = col_id % nshards
col_off = col_id / nshards
shard_pos = row_off * FLAGS.shard_size + col_off # row major
shard_files[(row_shard, col_shard)].write(
shard_cooc_fmt.pack(shard_pos, cnt))
# Accumulate marginals.
row_sums[row_id] += cnt
col_sums[col_id] += cnt
sys.stdout.write('\n')
if any(abs(r - c) > 0.1 for r, c in itertools.izip(row_sums, col_sums)):
print('WARNING! Row and column marginals differ; is your matrix symmetric?',
file=sys.stderr)
return (shard_files, row_sums)
def main(_):
with open(FLAGS.vocab, 'r') as lines:
orig_vocab_sz = sum(1 for _ in lines)
shard_sz = FLAGS.shard_size
vocab_sz = orig_vocab_sz - orig_vocab_sz % shard_sz
nshards = vocab_sz / shard_sz
print('vocab size is %d (originally %d), %d %dx%d-element shards' % (
vocab_sz, orig_vocab_sz, nshards * nshards, shard_sz, shard_sz))
# Create the output directory, if necessary
if FLAGS.output_dir and not os.path.isdir(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
with open(FLAGS.input, 'r') as coocs:
shard_files, marginals = make_shard_files(coocs, nshards, vocab_sz)
# Now sort the shards and write the TFRecords.
filename = os.path.join(FLAGS.output_dir, 'shards.recs')
with tf.python_io.TFRecordWriter(filename) as writer:
ix = 0
for (row, col), fh in shard_files.iteritems():
ix += 1
sys.stdout.write('\rwriting shard %d/%d' % (ix, len(shard_files)))
sys.stdout.flush()
fh.seek(0)
buf = fh.read()
os.unlink(fh.name)
fh.close()
coocs = [
shard_cooc_fmt.unpack_from(buf, off)
for off in range(0, len(buf), shard_cooc_fmt.size)]
# N.B. we assume that there aren't any duplicates here!
coocs.sort(key=lambda kv: kv[0])
def _int64s(xs):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(xs)))
def _floats(xs):
return tf.train.Feature(float_list=tf.train.FloatList(value=list(xs)))
example = tf.train.Example(features=tf.train.Features(feature={
'global_row': _int64s(row + nshards * i for i in range(shard_sz)),
'global_col': _int64s(col + nshards * i for i in range(shard_sz)),
'sparse_local_row': _int64s(pos / shard_sz for pos, _ in coocs),
'sparse_local_col': _int64s(pos % shard_sz for pos, _ in coocs),
'sparse_value': _floats(cnt for _, cnt in coocs)}))
writer.write(example.SerializeToString())
print('\nwriting marginals...')
with open(os.path.join(FLAGS.output_dir, 'marginals.txt'), 'w') as fh:
for cnt in marginals:
fh.write('%0.1f\n' % cnt)
print('done!')
if __name__ == '__main__':
tf.app.run()