-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrf608_fitresultaspdf.C
121 lines (90 loc) · 4.42 KB
/
rf608_fitresultaspdf.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
//////////////////////////////////////////////////////////////////////////
//
// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #608
//
// Representing the parabolic approximation of the fit as
// a multi-variate Gaussian on the parameters of the fitted p.d.f.
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooAddPdf.h"
#include "RooChebychev.h"
#include "RooFitResult.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TFile.h"
#include "TStyle.h"
#include "TH2.h"
#include "TH3.h"
using namespace RooFit ;
void rf608_fitresultaspdf()
{
// C r e a t e m o d e l a n d d a t a s e t
// -----------------------------------------------
// Observable
RooRealVar x("x","x",-20,20) ;
// Model (intentional strong correlations)
RooRealVar mean("mean","mean of g1 and g2",0,-1,1) ;
RooRealVar sigma_g1("sigma_g1","width of g1",2) ;
RooGaussian g1("g1","g1",x,mean,sigma_g1) ;
RooRealVar sigma_g2("sigma_g2","width of g2",4,3.0,5.0) ;
RooGaussian g2("g2","g2",x,mean,sigma_g2) ;
RooRealVar frac("frac","frac",0.5,0.0,1.0) ;
RooAddPdf model("model","model",RooArgList(g1,g2),frac) ;
// Generate 1000 events
RooDataSet* data = model.generate(x,1000) ;
// F i t m o d e l t o d a t a
// ----------------------------------
RooFitResult* r = model.fitTo(*data,Save()) ;
// C r e a t e M V G a u s s i a n p d f o f f i t t e d p a r a m e t e r s
// ------------------------------------------------------------------------------------
RooAbsPdf* parabPdf = r->createHessePdf(RooArgSet(frac,mean,sigma_g2)) ;
// S o m e e x e c e r c i s e s w i t h t h e p a r a m e t e r p d f
// -----------------------------------------------------------------------------
// Generate 100K points in the parameter space, sampled from the MVGaussian p.d.f.
RooDataSet* d = parabPdf->generate(RooArgSet(mean,sigma_g2,frac),100000) ;
// Sample a 3-D histogram of the p.d.f. to be visualized as an error ellipsoid using the GLISO draw option
TH3* hh_3d = (TH3*) parabPdf->createHistogram("mean,sigma_g2,frac",25,25,25) ;
hh_3d->SetFillColor(kBlue) ;
// Project 3D parameter p.d.f. down to 3 permutations of two-dimensional p.d.f.s
// The integrations corresponding to these projections are performed analytically
// by the MV Gaussian p.d.f.
RooAbsPdf* pdf_sigmag2_frac = parabPdf->createProjection(mean) ;
RooAbsPdf* pdf_mean_frac = parabPdf->createProjection(sigma_g2) ;
RooAbsPdf* pdf_mean_sigmag2 = parabPdf->createProjection(frac) ;
// Make 2D plots of the 3 two-dimensional p.d.f. projections
TH2* hh_sigmag2_frac = (TH2*) pdf_sigmag2_frac->createHistogram("sigma_g2,frac",50,50) ;
TH2* hh_mean_frac = (TH2*) pdf_mean_frac->createHistogram("mean,frac",50,50) ;
TH2* hh_mean_sigmag2 = (TH2*) pdf_mean_sigmag2->createHistogram("mean,sigma_g2",50,50) ;
hh_mean_frac->SetLineColor(kBlue) ;
hh_sigmag2_frac->SetLineColor(kBlue) ;
hh_mean_sigmag2->SetLineColor(kBlue) ;
// Draw the 'sigar'
gStyle->SetCanvasPreferGL(true);
gStyle->SetPalette(1) ;
new TCanvas("rf608_fitresultaspdf_1","rf608_fitresultaspdf_1",600,600) ;
hh_3d->Draw("gliso") ;
// Draw the 2D projections of the 3D p.d.f.
TCanvas* c2 = new TCanvas("rf608_fitresultaspdf_2","rf608_fitresultaspdf_2",900,600) ;
c2->Divide(3,2) ;
c2->cd(1) ; gPad->SetLeftMargin(0.15) ; hh_mean_sigmag2->GetZaxis()->SetTitleOffset(1.4) ; hh_mean_sigmag2->Draw("surf3") ;
c2->cd(2) ; gPad->SetLeftMargin(0.15) ; hh_sigmag2_frac->GetZaxis()->SetTitleOffset(1.4) ; hh_sigmag2_frac->Draw("surf3") ;
c2->cd(3) ; gPad->SetLeftMargin(0.15) ; hh_mean_frac->GetZaxis()->SetTitleOffset(1.4) ; hh_mean_frac->Draw("surf3") ;
// Draw the distributions of parameter points sampled from the p.d.f.
TH1* tmp1 = d->createHistogram("mean,sigma_g2",50,50) ;
TH1* tmp2 = d->createHistogram("sigma_g2,frac",50,50) ;
TH1* tmp3 = d->createHistogram("mean,frac",50,50) ;
c2->cd(4) ; gPad->SetLeftMargin(0.15) ; tmp1->GetZaxis()->SetTitleOffset(1.4) ; tmp1->Draw("lego3") ;
c2->cd(5) ; gPad->SetLeftMargin(0.15) ; tmp2->GetZaxis()->SetTitleOffset(1.4) ; tmp2->Draw("lego3") ;
c2->cd(6) ; gPad->SetLeftMargin(0.15) ; tmp3->GetZaxis()->SetTitleOffset(1.4) ; tmp3->Draw("lego3") ;
}