-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrf602_chi2fit.C
86 lines (68 loc) · 2.65 KB
/
rf602_chi2fit.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
//////////////////////////////////////////////////////////////////////////
//
// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #602
//
// Setting up a chi^2 fit to a binned dataset
//
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooChebychev.h"
#include "RooAddPdf.h"
#include "RooChi2Var.h"
#include "RooMinuit.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
using namespace RooFit ;
void rf602_chi2fit()
{
// S e t u p m o d e l
// ---------------------
// Declare observable x
RooRealVar x("x","x",0,10) ;
// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
RooRealVar mean("mean","mean of gaussians",5) ;
RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
RooRealVar sigma2("sigma2","width of gaussians",1) ;
RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
// Build Chebychev polynomial p.d.f.
RooRealVar a0("a0","a0",0.5,0.,1.) ;
RooRealVar a1("a1","a1",-0.2,0.,1.) ;
RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
// Sum the signal components into a composite signal p.d.f.
RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
// C r e a t e b i n n e d d a t a s e t
// -----------------------------------------
RooDataSet* d = model.generate(x,10000) ;
RooDataHist* dh = d->binnedClone() ;
// Construct a chi^2 of the data and the model.
// When a p.d.f. is used in a chi^2 fit, the probability density scaled
// by the number of events in the dataset to obtain the fit function
// If model is an extended p.d.f, the expected number events is used
// instead of the observed number of events.
model.chi2FitTo(*dh) ;
// NB: It is also possible to fit a RooAbsReal function to a RooDataHist
// using chi2FitTo().
// Note that entries with zero bins are _not_ allowed
// for a proper chi^2 calculation and will give error
// messages
RooDataSet* dsmall = (RooDataSet*) d->reduce(EventRange(1,100)) ;
RooDataHist* dhsmall = dsmall->binnedClone() ;
RooChi2Var chi2_lowstat("chi2_lowstat","chi2",model,*dhsmall) ;
cout << chi2_lowstat.getVal() << endl ;
}