forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_17-02.cpp
92 lines (81 loc) · 2.97 KB
/
example_17-02.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Example 17-2. Farneback optical flow example code
#include <vector>
#include <iostream>
#include <cstdlib>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using std::cout;
using std::cerr;
using std::string;
// Argument values for calcOpticalFlowFarneback
//
const double pyr_scale = 0.85; // Scale between pyramid levels (< 1.0)
const int levels = 7; // Number of pyramid levels
const int winsize = 13; // Size of window for pre-smoothing pass
const int iterations = 10; // Iterations for each pyramid level
const int poly_n = 5; // Area over which polynomial will be fit
const double poly_sigma = 1.1; // Width of fit polygon
// Function returns cv::Mat object with optical flow visualization
//
cv::Mat get_optflow_image(cv::Mat& optflow, cv::Mat& img) {
cv::Scalar arrow_color(0, 0, 255);
cv::Mat res = img.clone();
res /= 2; // making image darker
int rows = res.rows;
int cols = res.cols;
const int step = 12;
for (int x = (step >> 1); x < rows; x += step)
for (int y = (step >> 1); y < cols; y += step) {
float vx = optflow.at<cv::Vec2f>(x, y)[0];
float vy = optflow.at<cv::Vec2f>(x, y)[1];
cv::Point pt1(y, x);
cv::Point pt2(y + vx, x + vy);
cv::arrowedLine(res, pt1, pt2, arrow_color, 1);
}
return res;
}
int main(int argc, char** argv) {
// Program expects at least one argument that is path to video file
//
if (argc < 2) {
cerr << "\nExample 17-2: Farnback optical flow example\n"
<< "Use:\n" << argv[0] << " <path/video_file>\n"
<< "Example:\n" << argv[0] << " ../test.avi\n"
<< std::endl;
exit(1);
}
string file_name = string(argv[1]);
cv::VideoCapture capture(file_name);
if (!capture.isOpened()) {
cerr << "Cannot open file \"" << file_name << "\"\n";
exit(-1);
}
cv::Mat optflow; // optical flow result
cv::Mat optflow_image; // optical flow visualization
cv::Mat prev_frame; // previous frame grayscale image
cv::Mat frame; // current frame grayscale image
cv::Mat colored_frame; // current frame RGB-image
cv::namedWindow("video");
// User can terminate program with hitting ESC
//
while ((cv::waitKey(10) & 255) != 27) {
capture >> colored_frame;
if (!colored_frame.rows || !colored_frame.cols) {
break;
}
if (colored_frame.type() == CV_8UC3) {
cvtColor(colored_frame, frame, CV_BGR2GRAY);
}
if (prev_frame.rows) {
calcOpticalFlowFarneback(prev_frame, frame, optflow, pyr_scale, levels, winsize,
iterations, poly_n, poly_sigma, cv::OPTFLOW_FARNEBACK_GAUSSIAN);
optflow_image = get_optflow_image(optflow, colored_frame);
cv::imshow("video", optflow_image);
}
prev_frame = frame.clone();
}
cv::destroyAllWindows();
return 0;
}