forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhigherhrnet_hrnet_w32_512.yml
139 lines (124 loc) · 2.92 KB
/
higherhrnet_hrnet_w32_512.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use_gpu: true
log_iter: 10
save_dir: output
snapshot_epoch: 10
weights: output/higherhrnet_hrnet_w32_512/model_final
epoch: 300
num_joints: &num_joints 17
flip_perm: &flip_perm [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
input_size: &input_size 512
hm_size: &hm_size 128
hm_size_2x: &hm_size_2x 256
max_people: &max_people 30
metric: COCO
IouType: keypoints
num_classes: 1
#####model
architecture: HigherHRNet
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams
HigherHRNet:
backbone: HRNet
hrhrnet_head: HrHRNetHead
post_process: HrHRNetPostProcess
flip_perm: *flip_perm
eval_flip: true
HRNet:
width: &width 32
freeze_at: -1
freeze_norm: false
return_idx: [0]
HrHRNetHead:
num_joints: *num_joints
width: *width
loss: HrHRNetLoss
swahr: false
HrHRNetLoss:
num_joints: *num_joints
swahr: false
#####optimizer
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
milestones: [200, 260]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
type: Adam
regularizer: None
#####data
TrainDataset:
!KeypointBottomUpCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
return_bbox: False
return_area: False
return_class: False
EvalDataset:
!KeypointBottomUpCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
test_mode: true
return_bbox: False
return_area: False
return_class: False
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 8
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomAffine:
max_degree: 30
scale: [0.75, 1.5]
max_shift: 0.2
trainsize: [*input_size, *input_size]
hmsize: [*hm_size, *hm_size_2x]
- KeyPointFlip:
flip_prob: 0.5
flip_permutation: *flip_perm
hmsize: [*hm_size, *hm_size_2x]
- ToHeatmaps:
num_joints: *num_joints
hmsize: [*hm_size, *hm_size_2x]
sigma: 2
- TagGenerate:
num_joints: *num_joints
max_people: *max_people
- NormalizePermute:
mean: *global_mean
std: *global_std
batch_size: 20
shuffle: true
drop_last: true
use_shared_memory: true
EvalReader:
sample_transforms:
- EvalAffine:
size: *input_size
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
TestReader:
sample_transforms:
- Decode: {}
- EvalAffine:
size: *input_size
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1