-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
383 lines (302 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright 2019 Christopher John Bayron
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been created by Christopher John Bayron based on "rnn_gan.py"
# by Olof Mogren. The referenced code is available in:
#
# https://github.com/olofmogren/c-rnn-gan
import os
from argparse import ArgumentParser
import torch
import torch.nn as nn
from torch import optim
from c_rnn_gan import Generator, Discriminator
import music_data_utils
DATA_DIR = 'data'
CKPT_DIR = 'models'
COMPOSER = 'sonata-ish'
G_FN = 'c_rnn_gan_g.pth'
D_FN = 'c_rnn_gan_d.pth'
G_LRN_RATE = 0.001
D_LRN_RATE = 0.001
MAX_GRAD_NORM = 5.0
# following values are modified at runtime
MAX_SEQ_LEN = 200
BATCH_SIZE = 32
EPSILON = 1e-40 # value to use to approximate zero (to prevent undefined results)
class GLoss(nn.Module):
''' C-RNN-GAN generator loss
'''
def __init__(self):
super(GLoss, self).__init__()
def forward(self, logits_gen):
logits_gen = torch.clamp(logits_gen, EPSILON, 1.0)
batch_loss = -torch.log(logits_gen)
return torch.mean(batch_loss)
class DLoss(nn.Module):
''' C-RNN-GAN discriminator loss
'''
def __init__(self, label_smoothing=False):
super(DLoss, self).__init__()
self.label_smoothing = label_smoothing
def forward(self, logits_real, logits_gen):
''' Discriminator loss
logits_real: logits from D, when input is real
logits_gen: logits from D, when input is from Generator
loss = -(ylog(p) + (1-y)log(1-p))
'''
logits_real = torch.clamp(logits_real, EPSILON, 1.0)
d_loss_real = -torch.log(logits_real)
if self.label_smoothing:
p_fake = torch.clamp((1 - logits_real), EPSILON, 1.0)
d_loss_fake = -torch.log(p_fake)
d_loss_real = 0.9*d_loss_real + 0.1*d_loss_fake
logits_gen = torch.clamp((1 - logits_gen), EPSILON, 1.0)
d_loss_gen = -torch.log(logits_gen)
batch_loss = d_loss_real + d_loss_gen
return torch.mean(batch_loss)
def run_training(model, optimizer, criterion, dataloader, freeze_g=False, freeze_d=False):
''' Run single training epoch
'''
num_feats = dataloader.get_num_song_features()
dataloader.rewind(part='train')
batch_meta, batch_song = dataloader.get_batch(BATCH_SIZE, MAX_SEQ_LEN, part='train')
model['g'].train()
model['d'].train()
loss = {}
g_loss_total = 0.0
d_loss_total = 0.0
num_corrects = 0
num_sample = 0
while batch_meta is not None and batch_song is not None:
real_batch_sz = batch_song.shape[0]
# get initial states
# each batch is independent i.e. not a continuation of previous batch
# so we reset states for each batch
# POSSIBLE IMPROVEMENT: next batch is continuation of previous batch
g_states = model['g'].init_hidden(real_batch_sz)
d_state = model['d'].init_hidden(real_batch_sz)
#### GENERATOR ####
if not freeze_g:
optimizer['g'].zero_grad()
# prepare inputs
z = torch.empty([real_batch_sz, MAX_SEQ_LEN, num_feats]).uniform_() # random vector
batch_song = torch.Tensor(batch_song)
# feed inputs to generator
g_feats, _ = model['g'](z, g_states)
# calculate loss, backprop, and update weights of G
if isinstance(criterion['g'], GLoss):
d_logits_gen, _, _ = model['d'](g_feats, d_state)
loss['g'] = criterion['g'](d_logits_gen)
else: # feature matching
# feed real and generated input to discriminator
_, d_feats_real, _ = model['d'](batch_song, d_state)
_, d_feats_gen, _ = model['d'](g_feats, d_state)
loss['g'] = criterion['g'](d_feats_real, d_feats_gen)
if not freeze_g:
loss['g'].backward()
nn.utils.clip_grad_norm_(model['g'].parameters(), max_norm=MAX_GRAD_NORM)
optimizer['g'].step()
#### DISCRIMINATOR ####
if not freeze_d:
optimizer['d'].zero_grad()
# feed real and generated input to discriminator
d_logits_real, _, _ = model['d'](batch_song, d_state)
# need to detach from operation history to prevent backpropagating to generator
d_logits_gen, _, _ = model['d'](g_feats.detach(), d_state)
# calculate loss, backprop, and update weights of D
loss['d'] = criterion['d'](d_logits_real, d_logits_gen)
if not freeze_d:
loss['d'].backward()
nn.utils.clip_grad_norm_(model['d'].parameters(), max_norm=MAX_GRAD_NORM)
optimizer['d'].step()
g_loss_total += loss['g'].item()
d_loss_total += loss['d'].item()
num_corrects += (d_logits_real > 0.5).sum().item() + (d_logits_gen < 0.5).sum().item()
num_sample += real_batch_sz
# fetch next batch
batch_meta, batch_song = dataloader.get_batch(BATCH_SIZE, MAX_SEQ_LEN, part='train')
g_loss_avg, d_loss_avg = 0.0, 0.0
d_acc = 0.0
if num_sample > 0:
g_loss_avg = g_loss_total / num_sample
d_loss_avg = d_loss_total / num_sample
d_acc = 100 * num_corrects / (2 * num_sample) # 2 because (real + generated)
return model, g_loss_avg, d_loss_avg, d_acc
def run_validation(model, criterion, dataloader):
''' Run single validation epoch
'''
num_feats = dataloader.get_num_song_features()
dataloader.rewind(part='validation')
batch_meta, batch_song = dataloader.get_batch(BATCH_SIZE, MAX_SEQ_LEN, part='validation')
model['g'].eval()
model['d'].eval()
g_loss_total = 0.0
d_loss_total = 0.0
num_corrects = 0
num_sample = 0
while batch_meta is not None and batch_song is not None:
real_batch_sz = batch_song.shape[0]
# initial states
g_states = model['g'].init_hidden(real_batch_sz)
d_state = model['d'].init_hidden(real_batch_sz)
#### GENERATOR ####
# prepare inputs
z = torch.empty([real_batch_sz, MAX_SEQ_LEN, num_feats]).uniform_() # random vector
batch_song = torch.Tensor(batch_song)
# feed inputs to generator
g_feats, _ = model['g'](z, g_states)
# feed real and generated input to discriminator
d_logits_real, d_feats_real, _ = model['d'](batch_song, d_state)
d_logits_gen, d_feats_gen, _ = model['d'](g_feats, d_state)
# calculate loss
if isinstance(criterion['g'], GLoss):
g_loss = criterion['g'](d_logits_gen)
else: # feature matching
g_loss = criterion['g'](d_feats_real, d_feats_gen)
d_loss = criterion['d'](d_logits_real, d_logits_gen)
g_loss_total += g_loss.item()
d_loss_total += d_loss.item()
num_corrects += (d_logits_real > 0.5).sum().item() + (d_logits_gen < 0.5).sum().item()
num_sample += real_batch_sz
# fetch next batch
batch_meta, batch_song = dataloader.get_batch(BATCH_SIZE, MAX_SEQ_LEN, part='validation')
g_loss_avg, d_loss_avg = 0.0, 0.0
d_acc = 0.0
if num_sample > 0:
g_loss_avg = g_loss_total / num_sample
d_loss_avg = d_loss_total / num_sample
d_acc = 100 * num_corrects / (2 * num_sample) # 2 because (real + generated)
return g_loss_avg, d_loss_avg, d_acc
def run_epoch(model, optimizer, criterion, dataloader, ep, num_ep,
freeze_g=False, freeze_d=False, pretraining=False):
''' Run a single epoch
'''
model, trn_g_loss, trn_d_loss, trn_acc = \
run_training(model, optimizer, criterion, dataloader, freeze_g=freeze_g, freeze_d=freeze_d)
val_g_loss, val_d_loss, val_acc = run_validation(model, criterion, dataloader)
if pretraining:
print("Pretraining Epoch %d/%d " % (ep+1, num_ep), "[Freeze G: ", freeze_g, ", Freeze D: ", freeze_d, "]")
else:
print("Epoch %d/%d " % (ep+1, num_ep), "[Freeze G: ", freeze_g, ", Freeze D: ", freeze_d, "]")
print("\t[Training] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f\n"
"\t[Validation] G_loss: %0.8f, D_loss: %0.8f, D_acc: %0.2f" %
(trn_g_loss, trn_d_loss, trn_acc,
val_g_loss, val_d_loss, val_acc))
# -- DEBUG --
# This is for monitoring the current output from generator
# generate from model then save to MIDI file
g_states = model['g'].init_hidden(1)
num_feats = dataloader.get_num_song_features()
z = torch.empty([1, MAX_SEQ_LEN, num_feats]).uniform_() # random vector
if torch.cuda.is_available():
z = z.cuda()
model['g'].cuda()
model['g'].eval()
g_feats, _ = model['g'](z, g_states)
song_data = g_feats.squeeze().cpu()
song_data = song_data.detach().numpy()
if (ep+1) == num_ep:
midi_data = dataloader.save_data('sample.mid', song_data)
else:
midi_data = dataloader.save_data(None, song_data)
print(midi_data[0][:16])
# -- DEBUG --
return model, trn_acc
def main(args):
''' Training sequence
'''
dataloader = music_data_utils.MusicDataLoader(DATA_DIR, single_composer=COMPOSER)
num_feats = dataloader.get_num_song_features()
# First checking if GPU is available
train_on_gpu = torch.cuda.is_available()
if train_on_gpu:
print('Training on GPU.')
else:
print('No GPU available, training on CPU.')
model = {
'g': Generator(num_feats, use_cuda=train_on_gpu),
'd': Discriminator(num_feats, use_cuda=train_on_gpu)
}
if args.use_sgd:
optimizer = {
'g': optim.SGD(model['g'].parameters(), lr=args.g_lrn_rate, momentum=0.9),
'd': optim.SGD(model['d'].parameters(), lr=args.d_lrn_rate, momentum=0.9)
}
else:
optimizer = {
'g': optim.Adam(model['g'].parameters(), args.g_lrn_rate),
'd': optim.Adam(model['d'].parameters(), args.d_lrn_rate)
}
criterion = {
'g': nn.MSELoss(reduction='sum') if args.feature_matching else GLoss(),
'd': DLoss(args.label_smoothing)
}
if args.load_g:
ckpt = torch.load(os.path.join(CKPT_DIR, G_FN))
model['g'].load_state_dict(ckpt)
print("Continue training of %s" % os.path.join(CKPT_DIR, G_FN))
if args.load_d:
ckpt = torch.load(os.path.join(CKPT_DIR, D_FN))
model['d'].load_state_dict(ckpt)
print("Continue training of %s" % os.path.join(CKPT_DIR, D_FN))
if train_on_gpu:
model['g'].cuda()
model['d'].cuda()
if not args.no_pretraining:
for ep in range(args.d_pretraining_epochs):
model, _ = run_epoch(model, optimizer, criterion, dataloader,
ep, args.d_pretraining_epochs, freeze_g=True, pretraining=True)
for ep in range(args.g_pretraining_epochs):
model, _ = run_epoch(model, optimizer, criterion, dataloader,
ep, args.g_pretraining_epochs, freeze_d=True, pretraining=True)
freeze_d = False
for ep in range(args.num_epochs):
# if ep % args.freeze_d_every == 0:
# freeze_d = not freeze_d
model, trn_acc = run_epoch(model, optimizer, criterion, dataloader, ep, args.num_epochs, freeze_d=freeze_d)
if args.conditional_freezing:
# conditional freezing
freeze_d = False
if trn_acc >= 95.0:
freeze_d = True
if not args.no_save_g:
torch.save(model['g'].state_dict(), os.path.join(CKPT_DIR, G_FN))
print("Saved generator: %s" % os.path.join(CKPT_DIR, G_FN))
if not args.no_save_d:
torch.save(model['d'].state_dict(), os.path.join(CKPT_DIR, D_FN))
print("Saved discriminator: %s" % os.path.join(CKPT_DIR, D_FN))
if __name__ == "__main__":
ARG_PARSER = ArgumentParser()
ARG_PARSER.add_argument('--load_g', action='store_true')
ARG_PARSER.add_argument('--load_d', action='store_true')
ARG_PARSER.add_argument('--no_save_g', action='store_true')
ARG_PARSER.add_argument('--no_save_d', action='store_true')
ARG_PARSER.add_argument('--num_epochs', default=300, type=int)
ARG_PARSER.add_argument('--seq_len', default=256, type=int)
ARG_PARSER.add_argument('--batch_size', default=16, type=int)
ARG_PARSER.add_argument('--g_lrn_rate', default=0.001, type=float)
ARG_PARSER.add_argument('--d_lrn_rate', default=0.001, type=float)
ARG_PARSER.add_argument('--no_pretraining', action='store_true')
ARG_PARSER.add_argument('--g_pretraining_epochs', default=5, type=int)
ARG_PARSER.add_argument('--d_pretraining_epochs', default=5, type=int)
# ARG_PARSER.add_argument('--freeze_d_every', default=5, type=int)
ARG_PARSER.add_argument('--use_sgd', action='store_true')
ARG_PARSER.add_argument('--conditional_freezing', action='store_true')
ARG_PARSER.add_argument('--label_smoothing', action='store_true')
ARG_PARSER.add_argument('--feature_matching', action='store_true')
ARGS = ARG_PARSER.parse_args()
MAX_SEQ_LEN = ARGS.seq_len
BATCH_SIZE = ARGS.batch_size
main(ARGS)