forked from t3nsor/codebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.cpp
78 lines (71 loc) · 2.12 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
struct cpx
{
cpx(){}
cpx(double aa):a(aa){}
cpx(double aa, double bb):a(aa),b(bb){}
double a;
double b;
double modsq(void) const
{
return a * a + b * b;
}
cpx bar(void) const
{
return cpx(a, -b);
}
};
cpx operator +(cpx a, cpx b)
{
return cpx(a.a + b.a, a.b + b.b);
}
cpx operator *(cpx a, cpx b)
{
return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
}
cpx operator /(cpx a, cpx b)
{
cpx r = a * b.bar();
return cpx(r.a / b.modsq(), r.b / b.modsq());
}
cpx EXP(double theta)
{
return cpx(cos(theta),sin(theta));
}
const double two_pi = 4 * acos(0);
// in: input array
// out: output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum_{j=0}^{size - 1} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
{
if(size < 1) return;
if(size == 1)
{
out[0] = in[0];
return;
}
FFT(in, out, step * 2, size / 2, dir);
FFT(in + step, out + size / 2, step * 2, size / 2, dir);
for(int i = 0 ; i < size / 2 ; i++)
{
cpx even = out[i];
cpx odd = out[i + size / 2];
out[i] = even + EXP(dir * two_pi * i / size) * odd;
out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
}
}
// Usage:
// f[0...N-1] and g[0..N-1] are numbers
// Want to compute the convolution h, defined by
// h[n] = sum of f[k]g[n-k] (k = 0, ..., N-1).
// Here, the index is cyclic; f[-1] = f[N-1], f[-2] = f[N-2], etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H.
// The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N log N) time, do the following:
// 1. Compute F and G (pass dir = 1 as the argument).
// 2. Get H by element-wise multiplying F and G.
// 3. Get h by taking the inverse FFT (use dir = -1 as the argument)
// and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
// To compute an *acyclic* convolution, pad f and g to the right with zeroes.