forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
huggingface_api.py
72 lines (58 loc) · 2.11 KB
/
huggingface_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Use FastChat with Hugging Face generation APIs.
Usage:
python3 -m fastchat.serve.huggingface_api --model lmsys/vicuna-7b-v1.3
python3 -m fastchat.serve.huggingface_api --model lmsys/fastchat-t5-3b-v1.0
"""
import argparse
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastchat.model import load_model, get_conversation_template, add_model_args
@torch.inference_mode()
def main(args):
model, tokenizer = load_model(
args.model_path,
args.device,
args.num_gpus,
args.max_gpu_memory,
args.load_8bit,
args.cpu_offloading,
revision=args.revision,
debug=args.debug,
)
msg = args.message
conv = get_conversation_template(args.model_path)
conv.append_message(conv.roles[0], msg)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
torch.as_tensor(input_ids).cuda(),
do_sample=True,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
max_new_tokens=args.max_new_tokens,
)
if model.config.is_encoder_decoder:
output_ids = output_ids[0]
else:
output_ids = output_ids[0][len(input_ids[0]) :]
outputs = tokenizer.decode(
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
)
print(f"{conv.roles[0]}: {msg}")
print(f"{conv.roles[1]}: {outputs}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_model_args(parser)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--message", type=str, default="Hello! Who are you?")
args = parser.parse_args()
# Reset default repetition penalty for T5 models.
if "t5" in args.model_path and args.repetition_penalty == 1.0:
args.repetition_penalty = 1.2
main(args)