forked from IntelPython/dpctl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsycl_timer.py
64 lines (54 loc) · 1.78 KB
/
sycl_timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Data Parallel Control (dpctl)
#
# Copyright 2020-2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dpnp
import numpy as np
import dpctl
import dpctl.tensor as dpt
from dpctl import SyclTimer
n = 4000
try:
q = dpctl.SyclQueue(property="enable_profiling")
except dpctl.SyclQueueCreationError:
print(
"Skipping the example, as dpctl.SyclQueue targeting "
"default device could not be created"
)
exit(0)
a = dpt.reshape(dpt.arange(n * n, dtype=np.float32, sycl_queue=q), (n, n))
b = dpt.reshape(
dpt.asarray(np.random.random(n * n), dtype=np.float32, sycl_queue=q), (n, n)
)
timer = SyclTimer(time_scale=1)
wall_times = []
device_times = []
print(
f"Performing matrix multiplication of two {n} by {n} matrices "
f"on {q.sycl_device.name}, repeating 5 times."
)
for _ in range(5):
with timer(q):
a_matmul_b = dpnp.matmul(a, b)
host_time, device_time = timer.dt
wall_times.append(host_time)
device_times.append(device_time)
c = dpnp.asnumpy(a_matmul_b)
cc = np.dot(dpnp.asnumpy(a), dpnp.asnumpy(b))
print("Wall time: ", wall_times, "\nDevice time: ", device_times)
print(
"Accuracy test: passed."
if np.allclose(c, cc)
else (f"Accuracy test: failed. Discrepancy {np.max(np.abs(c-cc))}")
)