-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.R
370 lines (256 loc) · 13.3 KB
/
analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
##########################################################################################
##########################################################################################
#################### ANALYSIS ############################################################
##########################################################################################
##########################################################################################
#Note1: All scripts and SOEP data files need to be in the same directory
#Note2: path.R file needs to be specified by the user
#Note3: This script needs to load functions.R script first
#Structure:
#0: Set-up
#1: Comparison of KM/FH estimators
#2: KM by strata
#3: Cox PH model
#4: Cox PH model diagnostics
#5: Comparison plots (survival curve, hazard function)
#6: Comparison tables (estimated coefficients)
##########################################################################################
#### Set Up ##############################################################################
##########################################################################################
#clear workspace
rm(list=ls())
#setwd(path) in path.R
source("path.R")
source("functions.R")
#install and load packages
source("packages.R")
load("datfinal.RDA")
##########################################################################################
#### Comparison Kaplan-Meier & Nelson-Aalen/Fleming-Harrington ###########################
##########################################################################################
# Kaplan-Meier estimator
km.fit <- survfit(Surv(time,event, type="right") ~ 1, data=dat, type="kaplan-meier")
# Fleming-Harrington estimator
fh.fit <- survfit(Surv(time,event, type="right") ~ 1, data=dat, type="fleming-harrington")
kmfh.all <- list(km.fit, fh.fit)
#Survival Function
surv.all <- nonparametricKurves()
#Cumulative Event Function: f(y)=1-y
#cumprop.all <- nonparametricKurves("event")
#Cumulative Hazard Function
cumhaz.all <- nonparametricKurves("cumhaz")
# put all plots in one graph
kmfh.glist <- list(surv.all, cumhaz.all)
arrange_ggsurvplots(kmfh.glist, print = TRUE, ncol = 2, nrow = 1)
##########################################################################################
#### KM by strata ########################################################################
##########################################################################################
#### KM by gender ###
# 0 = male, 1 = female
wide.fit <- survfit(Surv(time, event, type="right") ~ gender, data=dat)
km.sex <- kmGroupKurves(c("Male", "Female"), "Gender")
rm(wide.fit)
### KM by Metropolitan Area ###
# 0 = Urban, 1 = Rural
wide.fit <- survfit(Surv(time, event, type="right") ~ rural, data=dat)
km.urban <- kmGroupKurves(c("Urban", "Rural"), "Metropolitan Area")
rm(wide.fit)
#### KM by married ###
wide.fit <- survfit(Surv(time, event, type="right") ~ married, data=dat)
km.marr <- kmGroupKurves(c("No", "Yes"), "Married")
rm(wide.fit)
#### KM by ever_divorced ###
wide.fit <- survfit(Surv(time, event, type="right") ~ ever_div, data=dat)
km.div <- kmGroupKurves(c("No", "Yes"), "Ever Divorced")
rm(wide.fit)
#### KM by region ####
wide.fit <- survfit(Surv(time, event, type="right") ~ region, data=dat)
km.reg <- kmGroupKurves(c("West", "East"), "Region")
rm(wide.fit)
#### KM by migback ####
wide.fit <- survfit(Surv(time, event, type="right") ~ migback, data=dat)
km.mig <- kmGroupKurves(c("No", "Yes"), "Migr.Back.")
rm(wide.fit)
#### KM by highinc/lowinc ###
#define highinc variable as above median household income
medinc <- median(as.numeric(dat$hhinc), na.rm=TRUE)
dat.inc <- mutate(dat, highinc = ifelse(dat$hhinc > medinc, 1, 0))
summary(dat.inc$highinc)
#define survival object and fit KM estimator
wide.fit <- survfit(Surv(time, event, type="right") ~ highinc, data=dat.inc)
km.inc <- kmGroupKurves(c("Low", "High"),"HH Inc.")
rm(wide.fit, medinc, dat.inc)
#### KM by educ (ISCED 97) ###
wide.fit <- survfit(Surv(time, event, type="right") ~ educ, data=dat)
km.edu <- kmGroupKurves(c("Elementary", "Medium", "Higher voc.", "High"),"Education", line = c(1,1,1,1), conf=F)
rm(wide.fit)
### KM by cohorts 84-87 and 94-97 ###
dat <- mutate(dat, cohort8494 = ifelse (dat$firstyear<=1987, 1,ifelse(dat$firstyear>=1994 & dat$firstyear<=1997, 2, NA)))
summary(dat$cohort8494)
table(dat$cohort8494)
#define survival object and fit KM estimator
wide.fit <- survfit(Surv(time, event, type="right") ~ cohort8494, data=dat)
km.coh <- kmGroupKurves(c("84-87", "94-97"),"Cohorts")
rm(wide.fit)
### generate arranged plots ###
km.glist1 <- list(km.inc, km.mig)
km.plot1 <- arrange_ggsurvplots(km.glist1, ncol = 2, nrow = 1, print = FALSE,
risk.table.height = 0.25,
surv.plot.height = 1)
km.glist2 <- list(km.reg, km.urban)
km.plot2 <- arrange_ggsurvplots(km.glist2, ncol = 2, nrow = 1, print = FALSE,
risk.table.height = 0.25,
surv.plot.height = 1)
km.glist3 <- list(km.marr,km.div)
km.plot3 <- arrange_ggsurvplots(km.glist3, ncol = 2, nrow = 1, print = FALSE,
risk.table.height = 0.25,
surv.plot.height = 1)
#### print 'KM by strata' plots ###
print(km.plot1)
print(km.plot2)
print(km.plot3)
print(km.edu)
##########################################################################################
### Cox Proportional Hazards Regression ##################################################
##########################################################################################
# survival package to estimate models, survminer package for plots and diagnostics
# define survival object
coxsurv <- Surv(dat$time, dat$event, type="right")
# define formula
coxform <- as.formula("coxsurv ~ hhinc + rural + maxedu + region + migback + married + ever_div")
# estimate Cox regression
cox.ph <- coxph(coxform, data=dat)
summary(cox.ph)
# Cox PH model table
stargazer(cox.ph)
displayCoxPH(cox.ph, cap = "", dig.coef = 3, dig.p = 2)
# table in overleaf is constructed from both outputs
# Forest plot of results
dat <- within(dat,{
rural <- factor(rural, labels = c("urban", "rural"))
region <- factor(region, labels = c("west", "east"))
migback <- factor(migback, labels = c("No", "Yes"))
married <- factor(married, labels = c("No", "Yes"))
ever_div <- factor(ever_div, labels = c("No", "Yes"))
})
cox.ph <- coxph(coxform, data=dat)
ggforest(cox.ph)
##########################################################################################
### Cox Model Diagnostics ################################################################
##########################################################################################
### testing proportional hazards assumption (Schoenfeld) ###
# Schoenfeld test
coxtest <- cox.zph(cox.ph, transform = "km")
coxtest
stargazer(coxtest$table, out = "schoenfeld.tex")
# Schoenfeld graphical test of cox ph assumption #
# scaled Schoenfeld plots for two selected variables
ggcoxzph(coxtest, resid = T, point.col="lightcoral", point.alpha = 0.4, var=c("hhinc","maxedu"))
# scaled Schoenfeld plots for all variables
ggcoxzph(coxtest, point.alpha = 0.4, point.col="lightcoral")
### testing for influential Observations ####
# use Delta-Beta residuals to detect influential observations scaled by standard errors of coefficients
ggcoxdiagnostics(cox.ph, type = "dfbetas", ox.scale= "observation.id", hline.col = "darkgreen", hline.alpha = 0.5, point.alpha = 0.4, point.col = "lightcoral", sline.alpha = 0.4, sline.col = "dodgerblue")
rm(cox.ph, coxtest, coxsurv, coxform)
##########################################################################################
#### KM, Cox PH and Parametric distributions plot ########################################
##########################################################################################
# define survival object
coxparm <- Surv(dat$time, dat$event, type="right")
# define model formula
parmform <- as.formula("coxparm ~ hhinc + rural + maxedu + region + migback + married + ever_div")
# Kaplan-Meier estimator
kapm <- survfit(coxparm ~ 1, data=dat)
# fortify
# puts survival table from kapm object into a data frame
kap.dat <- fortify(kapm)
# Cox PH model
cox.ph <- coxph(formula=parmform, data=dat)
summary(cox.ph)
# fortify cox model output
cox.dat <- fortify(survfit(cox.ph, conf.int = F))
# Flexible splines (Royston and Parmar 2002)
flex.spline <- flexsurvspline(coxparm ~ 1, data = dat, k = 2, scale = "odds")
# Weibull distribution
weibull <- flexsurvreg(formula = parmform, data = dat, dist = "weibull")
# Exponential distribution
expo <- flexsurvreg(formula = parmform, data = dat, dist = "exp")
# Log-Logistic distribution
loglog <- flexsurvreg(formula = parmform, data = dat, dist = "llogis")
# Log-normal distribution
lnormal <- flexsurvreg(formula = parmform, data = dat, dist = "lnorm")
### plot all curves together ###
# Note: plot for Cox PH model is (by default) at average of covariates
grid.arrange(
ggplot(data.frame(summary(expo)), aes(x = time)) +
geom_line(aes(y = est, col = "Exponential")) +
geom_line(data = data.frame(summary(weibull)), aes(y = est, col = "Weibull")) +
geom_line(data = data.frame(summary(loglog)), aes(y = est, col = "Log-Logistic")) +
geom_line(data = data.frame(summary(lnormal)), aes(y = est, col = "Log-Normal")) +
geom_line(data = data.frame(summary(flex.spline)), aes(y = est, col = "Flexible Splines")) +
geom_step(data = kap.dat, aes(x=time, y=surv, colour = "Kaplan-Meier"), size = 0.37)+
geom_step(data = cox.dat, aes(x=time, y=surv, colour = "Cox PH"), size = 0.37)+
labs(x = "Time (years)", y = "Survival Probability", col = "Models") + theme_classic(),
ggplot(data.frame(summary(expo, type = "hazard")), aes(x = time)) +
geom_line(aes(y = est, col = "Exponential")) +
geom_line(data = data.frame(summary(weibull, type = "hazard")), aes(y = est, col = "Weibull")) +
geom_line(data = data.frame(summary(loglog, type = "hazard")), aes(y = est, col = "Log-Logistic")) +
geom_line(data = data.frame(summary(lnormal, type = "hazard")), aes(y = est, col = "Log-Normal")) +
geom_line(data = data.frame(summary(flex.spline, type = "hazard")), aes(y = est, col = "Flexible Splines")) +
labs(x = "Time (years)", y = "Hazard Function", col = "Models") + theme_classic(),
ncol = 2
)
# only survival curves as single plot
ggplot(data.frame(summary(expo)), aes(x = time)) +
geom_line(aes(y = est, col = "Exponential")) +
geom_line(data = data.frame(summary(weibull)), aes(y = est, col = "Weibull")) +
geom_line(data = data.frame(summary(loglog)), aes(y = est, col = "Log-Logistic")) +
geom_line(data = data.frame(summary(lnormal)), aes(y = est, col = "Log-Normal")) +
geom_line(data = data.frame(summary(flex.spline)), aes(y = est, col = "Flexible Splines")) +
geom_step(data = kap.dat, aes(x=time, y=surv, colour = "Kaplan-Meier"), size = 0.37)+
geom_step(data = cox.dat, aes(x=time, y=surv, colour = "Cox PH"), size = 0.37)+
labs(x = "Time (years)", y = "Survival Probability", col = "Models") + theme_classic()
# only hazard functions as single plot
ggplot(data.frame(summary(expo, type = "hazard")), aes(x = time)) +
geom_line(aes(y = est, col = "Exponential")) +
geom_line(data = data.frame(summary(weibull, type = "hazard")), aes(y = est, col = "Weibull")) +
geom_line(data = data.frame(summary(loglog, type = "hazard")), aes(y = est, col = "Log-Logistic")) +
geom_line(data = data.frame(summary(lnormal, type = "hazard")), aes(y = est, col = "Log-Normal")) +
geom_line(data = data.frame(summary(flex.spline, type = "hazard")), aes(y = est, col = "Flexible Splines")) +
labs(x = "Time (years)", y = "Hazard Function", col = "Models") + theme_classic()
##########################################################################################
#### Cox PH and Parametric distributions tables ##########################################
##########################################################################################
# stargazer only compatible with survreg, not flexsurvreg
# define survival object
coxparm <- Surv(dat$time, dat$event, type="right")
# define model formula
parmform <- as.formula("coxparm ~ hhinc + rural + maxedu + region + migback + married + ever_div")
# Cox PH model
cox.ph.tab <- coxph(formula=parmform, data=dat)
summary(cox.ph.tab)
# Weibull distribution
weibull.tab <- survreg(formula = parmform, data = dat, dist = "weibull")
# Exponential distribution
expo.tab <- survreg(formula = parmform, data = dat, dist = "exp")
# Log-Logistic distribution
loglog.tab <- survreg(formula = parmform, data = dat, dist = "loglogistic")
# Log-normal distribution
lnormal.tab <- survreg(formula = parmform, data = dat, dist = "lognormal")
# Results table
stargazer(cox.ph.tab, weibull.tab, loglog.tab, lnormal.tab, align=F, out = "comparison.tex")
# AIC for parametric models (model selection)
AICs <- matrix(data = NA, nrow = 4, ncol = 2)
AICs[1, 1] <- weibull$AIC
AICs[1, 2] <- weibull$loglik
AICs[2, 1] <- expo$AIC
AICs[2, 2] <- expo$loglik
AICs[3, 1] <- loglog$AIC
AICs[3, 2] <- loglog$loglik
AICs[4, 1] <- lnormal$AIC
AICs[4, 2] <- lnormal$loglik
rownames(AICs) <- c("Weibull", "Exponential", "Log-Logistic", "Log-Normal")
colnames(AICs) <- c("AIC", "Log-Likelihood")
t(AICs)
#Log-normal has best fit
stargazer(t(AICs), out="aic.tex", digits=0)