Skip to content

Latest commit

 

History

History
329 lines (260 loc) · 11.5 KB

README.md

File metadata and controls

329 lines (260 loc) · 11.5 KB

string-cluster

Build Status codecov

Install

Create a virtual environment with Python 3.9 and install from git:

pip install git+https://github.com/chris-santiago/stringcluster.git

Use

Preliminaries

This example shows how to use StringCluster to deduplicate a list of public company names. The example dataset is a series of company names and their respective variations.

StringCluster uses Tf-Idf vectorization to tokenize each element in a series of strings and normalize the count of each n-gram token. It then uses this transformation to construct a cosine similarity matrix by computing the linear kernel for the vector representations of each data observation. StringCluster can compare cosine similarity to either itself or a master list of strings to de-duplicate the original series.

import re

import pandas as pd

from stringcluster import StringCluster

Data

As mentioned, the example dataset is a series of company names (strings). To illustrate, we'll pull out all samples that contain the string "FACEBOOK"; we have 11 unique versions for this single company.

data = pd.read_csv('../data/companies.csv')
data.head(10)
company
0 MICROSOFT CORP
1 APPLE INC
2 FACEBOOK INC
3 ISHARES TR
4 ORACLE CORP
5 ALPHABET INC - A
6 JOHNSON & JOHNSON
7 WESTERN DIGITAL CORP
8 AMAZON.COM INC
9 VISA INC
companies = data['company']
mask = data['company'].str.contains('FACEBOOK')
facebook = data['company'][mask]
print(f'Number of unique version: {facebook.nunique()}')
facebook
Number of unique version: 11





2                                           FACEBOOK INC
408     FACEBOOK INC            CLASS                  A
474                                    FACEBOOK INC CL A
998                                           FACEBOOK-A
1042                                FACEBOOK INC CLASS A
1101                                      FACEBOOK INC A
1448                                      FACEBOOK INC-A
3020                                FACEBOOK INC COM NPV
3626                                     FACEBOOK INC -A
3638                                            FACEBOOK
4340                                      FACEBOOK, INC.
Name: company, dtype: object

De-duplicating

As mentioned, StringCluster can be used with or without a "master" list of string representations, depending on the use case. A master list is provided as the y parameter in the .fit_transform() method. This can be useful if user have a designated set of representations that they wish to group each sample under.

Without a master list

Let's first take a look at use without a master list. The StringCluster transformer takes three parameters:

Parameter Type Description
ngram_size int Size of ngrams to be extracted; default 2.
threshold float Threshold to determine similarities; must be between [0, 1]; default 0.8.
stop_tokens str RegEx pattern to remove during tokenization; default r'[\W_]+'

Although we're using Tf-Idf vectorization, and common tokens will have less effect, we can improve performance by providing a list of domain-specific stop tokens. In this case, we'll remove special characters, white space and any word that relates to "corporation", "incorporated", etc., prior to Tf-Idf vectorization-- these variations within a company's name are meaningless.

After fitting the StringCluster object and transforming the data, we see that all 11 variations of "Facebook" have consolidated to "FACEBOOK INC".

Of note: When using StringCluster without a master list, the transformer will default to replacing variations of a string representation with the first variation seen-- in the case, "FACEBOOK INC".

STOP_TOKENS = r'[\W_]+|(corporation$)|(corp.$)|(corp$)|(incorporated$)|(inc.$)|(inc$)|(company$)|(common$)|(com$)'

cluster = StringCluster(ngram_size=2, threshold=0.7, stop_tokens=STOP_TOKENS)
labels = cluster.fit_transform(data['company'])
labels[facebook.index]
2       FACEBOOK INC
408     FACEBOOK INC
474     FACEBOOK INC
998     FACEBOOK INC
1042    FACEBOOK INC
1101    FACEBOOK INC
1448    FACEBOOK INC
3020    FACEBOOK INC
3626    FACEBOOK INC
3638    FACEBOOK INC
4340    FACEBOOK INC
Name: company, dtype: object

With a master list

Let's take a look at use with a master list. As mentioned, the master list is passed as the y parameter in the .fit() and fit_transform() methods. In this case, each string in the series is compared against the master list and replaced with the representation in the master list with which it exhibits the highest cosine similarity.

TEST_SERIES = pd.Series(
        ['Johnson & Johnson, Inc.', 'Johnson & Johnson Inc.', 'Johnson & Johnson Inc',
         'Johnson & Johnson', 'Intel Corp', 'Intel Corp.', 'Intel Corporation', 'Google',
         'Apple', 'Amazon', 'Amazon Inc', 'Comcast Inc.', 'Comcast Corp']
    )
MASTER = ['Johnson & Johnson', 'Intel Corp', 'Google', 'Apple Inc', 'Amazon', 'Comcast']

STOP_TOKENS = r'[\W_]+|(corporation$)|(corp.$)|(corp$)|(incorporated$)|(inc.$)|(inc$)|(company$)|(common$)|(com$)'

cluster = StringCluster(ngram_size=2, stop_tokens=STOP_TOKENS)
labels = cluster.fit_transform(TEST_SERIES, MASTER)
labels
0     Johnson & Johnson
1     Johnson & Johnson
2     Johnson & Johnson
3     Johnson & Johnson
4            Intel Corp
5            Intel Corp
6            Intel Corp
7                Google
8             Apple Inc
9                Amazon
10               Amazon
11              Comcast
12              Comcast
dtype: object

Trialing Different Threshold Values

The StringCluster transformer is sensitive to the threshold parameter (especially without a master list), as this controls how matches are flagged, based on their cosine similarity. Let's take a look at how varying levels of the threshold parameter affect results on our Facebook example.

thresh = 0.7
while thresh < 1:
    cluster = StringCluster(ngram_size=2, threshold=thresh, stop_tokens=STOP_TOKENS)
    labels = cluster.fit_transform(data['company'])
    print(f'Threshold: {thresh}')
    print('----------------------------------------')
    print(labels[facebook.index])
    print('========================================')
    thresh += 0.05
Threshold: 0.7
----------------------------------------
2       FACEBOOK INC
408     FACEBOOK INC
474     FACEBOOK INC
998     FACEBOOK INC
1042    FACEBOOK INC
1101    FACEBOOK INC
1448    FACEBOOK INC
3020    FACEBOOK INC
3626    FACEBOOK INC
3638    FACEBOOK INC
4340    FACEBOOK INC
Name: company, dtype: object
========================================
Threshold: 0.75
----------------------------------------
2               FACEBOOK INC
408             FACEBOOK INC
474             FACEBOOK INC
998             FACEBOOK INC
1042            FACEBOOK INC
1101            FACEBOOK INC
1448            FACEBOOK INC
3020    FACEBOOK INC COM NPV
3626            FACEBOOK INC
3638            FACEBOOK INC
4340            FACEBOOK INC
Name: company, dtype: object
========================================
Threshold: 0.8
----------------------------------------
2                                           FACEBOOK INC
408     FACEBOOK INC            CLASS                  A
474                                         FACEBOOK INC
998                                         FACEBOOK INC
1042    FACEBOOK INC            CLASS                  A
1101                                        FACEBOOK INC
1448                                        FACEBOOK INC
3020                                FACEBOOK INC COM NPV
3626                                        FACEBOOK INC
3638                                        FACEBOOK INC
4340                                        FACEBOOK INC
Name: company, dtype: object
========================================
Threshold: 0.8500000000000001
----------------------------------------
2                                           FACEBOOK INC
408     FACEBOOK INC            CLASS                  A
474     FACEBOOK INC            CLASS                  A
998                                         FACEBOOK INC
1042    FACEBOOK INC            CLASS                  A
1101                                        FACEBOOK INC
1448                                        FACEBOOK INC
3020                                FACEBOOK INC COM NPV
3626                                        FACEBOOK INC
3638                                        FACEBOOK INC
4340                                        FACEBOOK INC
Name: company, dtype: object
========================================
Threshold: 0.9000000000000001
----------------------------------------
2                                           FACEBOOK INC
408     FACEBOOK INC            CLASS                  A
474     FACEBOOK INC            CLASS                  A
998                                         FACEBOOK INC
1042    FACEBOOK INC            CLASS                  A
1101                                   FACEBOOK INC CL A
1448                                   FACEBOOK INC CL A
3020                                FACEBOOK INC COM NPV
3626                                   FACEBOOK INC CL A
3638                                        FACEBOOK INC
4340                                        FACEBOOK INC
Name: company, dtype: object
========================================
Threshold: 0.9500000000000002
----------------------------------------
2                                           FACEBOOK INC
408     FACEBOOK INC            CLASS                  A
474                                    FACEBOOK INC CL A
998                                         FACEBOOK INC
1042    FACEBOOK INC            CLASS                  A
1101                                      FACEBOOK INC A
1448                                      FACEBOOK INC A
3020                                FACEBOOK INC COM NPV
3626                                      FACEBOOK INC A
3638                                        FACEBOOK INC
4340                                        FACEBOOK INC
Name: company, dtype: object
========================================