-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
56 lines (44 loc) · 1.98 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# use SSMI loss to retain spatial variability
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
import numpy as np
def gaussian(window_size, sigma):
gauss= torch.Tensor([exp(-(x-window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window= gaussian(window_size, 1.5).unsqueeze(1)
_2D_window= _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window= Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous(),
requires_grad=True)
return window
def _ssim(img1, img2, window, window_size, channel, size_average):
mu1= F.conv2d(img1, window, padding=window_size//2, groups= channel)
mu2= F.conv2d(img2, window, padding=window_size//2, groups= channel)
mu1_sq= mu1.pow(2)
mu2_sq= mu2.pow(2)
mu1_mu2= mu1*mu2
sigma1_sq= F.conv2d(img1*img1, window, padding= window_size//2, groups= channel)-mu1_sq
sigma2_sq= F.conv2d(img2*img2, window, padding= window_size//2, groups= channel)-mu2_sq
sigma12= F.conv2d(img1*img2, window, padding= window_size//2, groups= channel)-mu1_mu2
C1= 0.01**2
C2= 0.03**2
ssim_map= ((2*mu1_mu2+C1) * (2*sigma12+C2)) / ((mu1_sq+mu2_sq+C1)*(sigma1_sq + sigma2_sq+C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(nn.Module):
def __init__(self, window_size=7, use_gpu=True, size_averge=True):
super(SSIM, self).__init__()
self.window_size= window_size
self.use_gpu= use_gpu
self.size_average = size_averge
self.channel= 1
self.window= create_window(window_size, self.channel)
def forward(self, sim, obs):
window= self.window.cuda() if self.use_gpu else self.window
ssim= _ssim(sim, obs, window, self.window_size, self.channel, self.size_average)
return ssim