-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccuracy.py
412 lines (370 loc) · 18.3 KB
/
accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Parameter
import torch.optim as optim
from sklearn import metrics
import random
import os
import sys
import utils
from tqdm import tqdm
from collections import defaultdict
import time
import argparse
import dgl
from scipy.sparse import csr_matrix
from scipy.sparse import vstack as s_vstack
from sklearn.preprocessing import StandardScaler
from gensim.models import Word2Vec
import multiprocessing
from concurrent.futures import as_completed
from concurrent.futures import ProcessPoolExecutor
from scipy.sparse import csr_matrix, lil_matrix, csc_matrix
from preprocess.data_load import gen_DGLGraph, gen_weighted_DGLGraph
import preprocess.data_load as dl
from preprocess.batch import DataLoader
from initialize.initial_embedder import MultipleEmbedding
from initialize.random_walk_hyper import random_walk_hyper
from model.Whatsnet import Whatsnet, WhatsnetLayer
from model.layer import FC, Wrap_Embedding
def run_epoch(args, data, dataloader, initembedder, customerembedder, colorembedder, sizeembedder, groupembedder, embedder, scorer, opt="train"):
total_pred = []
total_label = []
num_data = 0
num_recon_data = 0
total_loss = 0
total_ce_loss = 0
total_recon_loss = 0
# Batch ==============================================================
ts = time.time()
batchcount = 0
pbar = tqdm(enumerate(dataloader), total=len(dataloader))
for step, (input_nodes, output_nodes, blocks) in pbar:
# Wrap up loader
blocks = [b.to(device) for b in blocks]
srcs, dsts = blocks[-1].edges(etype='in')
nodeindices = srcs.to(device)
hedgeindices = dsts.to(device)
nodelabels = blocks[-1].edges[('node','in','edge')].data['label'].long().to(device)
batchcount += 1
# Get Embedding
if args.embedder == "whatsnetLSPE":
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v_pos = data.v_pos[input_nodes['node']].to(device)
e_pos = data.e_pos[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat, v_pos, e_pos)
elif args.embedder == "whatsnet":
if args.att_type_v in ["ITRE", "ShawRE"]:
vindex = torch.arange(len(input_nodes['node'])).unsqueeze(1).to(device)
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat, vindex)
else:
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
# concat feature embedding
color_feat, _ = colorembedder(data.node2color[input_nodes['node']].long().to(device))
size_feat, _ = sizeembedder(data.node2size[input_nodes['node']].long().to(device))
group_feat, _ = groupembedder(data.node2group[input_nodes['node']].long().to(device))
v_feat = torch.concat((v_feat, color_feat, size_feat, group_feat), dim=1)
if not args.custom:
v, e = embedder(blocks, v_feat, e_feat, None, None)
else:
v, e = embedder(blocks, v_feat, e_feat, data, customerembedder)
else:
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat)
# Predict Class
if args.scorer == "sm":
if args.dataset_name == 'task1':
unique_hedgeindices = torch.unique(hedgeindices)
label_indices = []
for i in range(len(hedgeindices)):
if i == 0:
label_indices.append(i)
prev_value = hedgeindices[i]
else:
if hedgeindices[i] != prev_value:
label_indices.append(i)
prev_value = hedgeindices[i]
label_indices = torch.Tensor(label_indices).long()
nodelabels = nodelabels[label_indices]
hembedding = e[unique_hedgeindices]
input_embeddings = hembedding
predictions = scorer(input_embeddings)
elif args.dataset_name == 'task2':
if opt == 'train':
trainable_indices = torch.nonzero((nodelabels == 0) | (nodelabels == 1)).squeeze()
hedgeindices = hedgeindices[trainable_indices]
nodeindices = nodeindices[trainable_indices]
nodelabels = nodelabels[trainable_indices]
hembedding = e[hedgeindices]
vembedding = v[nodeindices]
input_embeddings = torch.cat([hembedding,vembedding], dim=1)
predictions = scorer(input_embeddings)
elif opt == 'valid':
valid_indices = torch.nonzero((nodelabels == 2) | (nodelabels == 3)).squeeze()
hedgeindices = hedgeindices[valid_indices]
nodeindices = nodeindices[valid_indices]
nodelabels = nodelabels[valid_indices]
nodelabels = nodelabels - 2
hembedding = e[hedgeindices]
vembedding = v[nodeindices]
input_embeddings = torch.cat([hembedding,vembedding], dim=1)
predictions = scorer(input_embeddings)
else:
raise ValueError("Not supported data type")
elif args.scorer == "im":
predictions, nodelabels = scorer(blocks[-1], v, e)
total_pred.append(predictions.detach())
total_label.append(nodelabels.detach())
description = f'Step: {step+1}/{len(dataloader)}'
pbar.set_description(description)
print("Time : ", time.time() - ts)
print(num_data)
return total_pred, total_label
def run_test_epoch(args, data, testdataloader, initembedder, customerembedder, colorembedder, sizeembedder, groupembedder, embedder, scorer, loss_fn):
total_pred = []
total_label = []
num_data = 0
num_recon_data = 0
total_loss = 0
total_ce_loss = 0
total_recon_loss = 0
# Batch ==============================================================
ts = time.time()
batchcount = 0
for input_nodes, output_nodes, blocks in testdataloader:
# Wrap up loader
blocks = [b.to(device) for b in blocks]
srcs, dsts = blocks[-1].edges(etype='in')
nodeindices_in_batch = srcs.to(device)
nodeindices = blocks[-1].srcdata[dgl.NID]['node'][srcs]
hedgeindices_in_batch = dsts.to(device)
hedgeindices = blocks[-1].srcdata[dgl.NID]['edge'][dsts]
hedgeindices = dsts.to(device)
nodelabels = blocks[-1].edges[('node','in','edge')].data['label'].long().to(device)
batchcount += 1
# Get Embedding
if args.embedder == "whatsnetLSPE":
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v_pos = data.v_pos[input_nodes['node']].to(device)
e_pos = data.e_pos[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat, v_pos, e_pos)
elif args.embedder == "whatsnet":
if args.att_type_v in ["ITRE", "ShawRE", "RafRE"]:
vindex = torch.arange(len(input_nodes['node'])).unsqueeze(1).to(device)
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat, vindex)
else:
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat)
else:
v_feat, recon_loss = initembedder(input_nodes['node'].to(device))
e_feat = data.e_feat[input_nodes['edge']].to(device)
v, e = embedder(blocks, v_feat, e_feat)
# Predict Class
if args.scorer == "sm":
if args.dataset_name == "task1":
hembedding = e[hedgeindices_in_batch]
input_embeddings = hembedding
predictions = scorer(input_embeddings)
elif args.dataset_name == "task2":
hembedding = e[hedgeindices_in_batch]
vembedding = v[nodeindices_in_batch]
input_embeddings = torch.cat([hembedding,vembedding], dim=1)
predictions = scorer(input_embeddings)
else:
raise ValueError("Not supported dataset type")
elif args.scorer == "im":
predictions, nodelabels = scorer(blocks[-1], v, e)
total_pred.append(predictions.detach())
pred_cls = torch.argmax(predictions, dim=1)
total_label.append(nodelabels.detach())
num_data += predictions.shape[0]
num_recon_data += input_nodes['node'].shape[0]
ce_loss = loss_fn(predictions, nodelabels)
loss = ce_loss + args.rw * recon_loss
total_loss += (loss.item() * predictions.shape[0])
total_ce_loss += (ce_loss.item() * predictions.shape[0])
total_recon_loss += (recon_loss.item() * input_nodes['node'].shape[0]) # This is fixed as zero
return total_pred, total_label, total_loss / num_data, total_ce_loss / num_data, total_recon_loss / num_recon_data, initembedder, customerembedder, colorembedder, sizeembedder, groupembedder, embedder, scorer
# Make Output Directory --------------------------------------------------------------------------------------------------------------
initialization = "rw"
args = utils.parse_args()
if args.evaltype == "test":
assert args.fix_seed
outputdir = "results_test/" + args.dataset_name + "_" + str(args.k) + "/" + initialization + "/"
outputParamResFname = outputdir + args.model_name + "/param_result.txt"
if args.custom:
outputdir += args.model_name + "/" + args.param_name +"/" + str(args.seed) + "/" + "custom_embedding/"
else:
outputdir += args.model_name + "/" + args.param_name +"/" + str(args.seed) + "/"
if args.recalculate is False and os.path.isfile(outputdir + "log_test_confusion.txt"):
sys.exit("Already Run")
else:
outputdir = "results/" + args.dataset_name + "_" + str(args.k) + "/" + initialization + "/"
outputdir += args.model_name + "/" + args.param_name +"/"
if args.recalculate is False and os.path.isfile(outputdir + "log_test_confusion.txt"):
sys.exit("Already Run")
if os.path.isdir(outputdir) is False:
os.makedirs(outputdir)
print("OutputDir = " + outputdir)
# Initialization --------------------------------------------------------------------
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
dataset_name = args.dataset_name #'citeseer' 'cora'
if args.fix_seed:
random.seed(args.seed)
np.random.seed(args.seed)
dgl.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
dgl.seed(args.seed)
exp_num = args.exp_num
test_epoch = args.test_epoch
plot_epoch = args.epochs
# Data -----------------------------------------------------------------------------
data = dl.Hypergraph(args, dataset_name)
if args.dataset_name == 'task1':
train_data = data.get_data(0)
valid_data = data.get_data(1)
elif args.dataset_name == 'task2':
train_data = data.get_data(0, task2=True)
valid_data = data.get_data(1, task2=True)
if args.evaltype == "test":
test_data = data.get_data(2)
ls = [{('node', 'in', 'edge'): -1, ('edge', 'con', 'node'): args.sampling}] * (args.num_layers * 2 + 1)
full_ls = [{('node', 'in', 'edge'): -1, ('edge', 'con', 'node'): -1}] * (args.num_layers * 2 + 1)
if data.weight_flag:
g = gen_weighted_DGLGraph(args, data.hedge2node, data.hedge2nodePE, data.hedge2nodepos, data.node2hedge, data.node2hedgePE, device)
else:
g = gen_DGLGraph(args, data.hedge2node, data.hedge2nodepos, data.node2hedge, device)
try:
sampler = dgl.dataloading.NeighborSampler(ls)
fullsampler = dgl.dataloading.NeighborSampler(full_ls)
except:
sampler = dgl.dataloading.MultiLayerNeighborSampler(ls, False)
fullsampler = dgl.dataloading.MultiLayerNeighborSampler(full_ls)
if args.use_gpu:
g = g.to(device)
train_data = train_data.to(device)
valid_data = valid_data.to(device)
if args.evaltype == "test":
test_data = test_data.to(device)
data.e_feat = data.e_feat.to(device)
dataloader = dgl.dataloading.DataLoader( g, {"edge": train_data}, sampler, batch_size=args.bs, shuffle=True, drop_last=False) # , num_workers=4
validdataloader = dgl.dataloading.DataLoader( g, {"edge": valid_data}, sampler, batch_size=args.bs, shuffle=True, drop_last=False)
if args.evaltype == "test":
testdataloader = dgl.dataloading.DataLoader(g, {"edge": test_data}, fullsampler, batch_size=args.bs, shuffle=False, drop_last=False)
args.input_vdim = data.v_feat.size(1)
args.input_edim = data.e_feat.size(1)
args.order_dim = data.order_dim
# init embedder
args.input_vdim = 48
if args.orderflag:
args.input_vdim = 44
savefname = "../%s_%d_wv_%d_%s.npy" % (args.dataset_name, args.k, args.input_vdim, args.walk)
node_list = np.arange(data.numnodes).astype('int')
# A: (data.numnodes, vector_size)의 embedding 생성, 이는 초기 node embedding으로 사용
if os.path.isfile(savefname) is False:
walk_path = random_walk_hyper(args, node_list, data.hedge2node)
walks = np.loadtxt(walk_path, delimiter=" ").astype('int')
print("Start turning path to strs")
split_num = 20
pool = ProcessPoolExecutor(max_workers=split_num)
process_list = []
walks = np.array_split(walks, split_num)
result = []
for walk in walks:
process_list.append(pool.submit(utils.walkpath2str, walk))
for p in as_completed(process_list):
result += p.result()
pool.shutdown(wait=True)
walks = result
# print(walks)
print("Start Word2vec")
print("num cpu cores", multiprocessing.cpu_count())
w2v = Word2Vec(walks, vector_size=args.input_vdim, window=10, min_count=0, sg=1, epochs=1, workers=multiprocessing.cpu_count())
print(w2v.wv['0'])
wv = w2v.wv
A = [wv[str(i)] for i in range(data.numnodes)]
np.save(savefname, A)
else:
print("load exist init walks")
A = np.load(savefname)
A = StandardScaler().fit_transform(A)
A = A.astype('float32')
A = torch.tensor(A).to(device)
# Make embedding vector with input
print(data.numnodes, data.numcustomers, data.numcolors, data.numsizes, data.numgroups)
initembedder = Wrap_Embedding(data.numnodes, args.input_vdim, scale_grad_by_freq=False, sparse=False).to(device)
initembedder.weight = nn.Parameter(A)
# Make embedding with feature
# 0-342037
customerembedder = Wrap_Embedding(data.numcustomers, 48, scale_grad_by_freq=False, sparse=False).to(device)
# 0-641
colorembedder = Wrap_Embedding(data.numcolors, 8, scale_grad_by_freq=False, sparse=False).to(device)
# 0-28
sizeembedder = Wrap_Embedding(data.numsizes, 8, scale_grad_by_freq=False, sparse=False).to(device)
# 0-31
groupembedder = Wrap_Embedding(data.numgroups, 8, scale_grad_by_freq=False, sparse=False).to(device)
# Add dimension for embeddings
args.input_vdim = args.input_vdim + 24
# args.input_edim = args.input_edim + 24
print("Model:", args.embedder)
# model init
if args.embedder == "whatsnet":
input_vdim = args.input_vdim
pe_ablation_flag = args.pe_ablation
embedder = Whatsnet(WhatsnetLayer, input_vdim, args.input_edim, args.dim_hidden, args.dim_vertex, args.dim_edge,
weight_dim=args.order_dim, num_heads=args.num_heads, num_layers=args.num_layers, num_inds=args.num_inds,
att_type_v=args.att_type_v, agg_type_v=args.agg_type_v, att_type_e=args.att_type_e, agg_type_e=args.agg_type_e,
num_att_layer=args.num_att_layer, dropout=args.dropout, weight_flag=data.weight_flag, pe_ablation_flag=pe_ablation_flag, vis_flag=args.analyze_att).to(device)
else:
print("Only whatsnet embedder supported currently")
print("Embedder to Device")
print("Scorer = ", args.scorer)
# pick scorer
if args.scorer == "sm":
if args.dataset_name == 'task1':
scorer = FC(args.dim_edge, args.dim_edge, args.output_dim, args.scorer_num_layers, args.dropout).to(device)
elif args.dataset_name == 'task2':
scorer = FC(args.dim_vertex + args.dim_edge, args.dim_edge, args.output_dim, args.scorer_num_layers, args.dropout).to(device)
else:
raise ValueError("Not supported dataset type")
# Train =================================================================================================================================================================================
initembedder.load_state_dict(torch.load(outputdir + 'initembedder.pt'))
customerembedder.load_state_dict(torch.load(outputdir + 'customerembedder.pt'))
colorembedder.load_state_dict(torch.load(outputdir + 'colorembedder.pt'))
sizeembedder.load_state_dict(torch.load(outputdir + 'sizeembedder.pt'))
groupembedder.load_state_dict(torch.load(outputdir + 'groupembedder.pt'))
embedder.load_state_dict(torch.load(outputdir + 'embedder.pt'))
scorer.load_state_dict(torch.load(outputdir + 'scorer.pt'))
# Test ===========================================================================================================================================================================
initembedder.eval()
customerembedder.eval()
colorembedder.eval()
sizeembedder.eval()
groupembedder.eval()
embedder.eval()
scorer.eval()
with torch.no_grad():
total_pred, total_label = run_epoch(args, data, validdataloader, initembedder, customerembedder, colorembedder, sizeembedder, groupembedder, embedder, scorer, opt="valid")
# Calculate Accuracy & Epoch Loss
total_label = torch.cat(total_label, dim=0)
total_pred = torch.cat(total_pred)
pred_cls = torch.argmax(total_pred, dim=1)
eval_acc = torch.eq(pred_cls, total_label).sum().item() / len(total_label)
y_test = total_label.cpu().numpy()
pred = pred_cls.cpu().numpy()
confusion, accuracy, precision, recall, f1 = utils.get_clf_eval(y_test, pred, avg='micro', outputdim=args.output_dim)
confusion, accuracy, precision, recall, f1 = utils.get_clf_eval(y_test, pred, avg='macro', outputdim=args.output_dim)
print(accuracy)