Skip to content

Commit

Permalink
Replace old factoring with Baillie-PSW
Browse files Browse the repository at this point in the history
  • Loading branch information
chiphogg committed Nov 15, 2024
1 parent 3b586a6 commit de68b3a
Show file tree
Hide file tree
Showing 5 changed files with 29 additions and 177 deletions.
117 changes: 25 additions & 92 deletions src/core/include/mp-units/ext/prime.h
Original file line number Diff line number Diff line change
Expand Up @@ -401,73 +401,20 @@ struct LucasSequenceElement {
return strong_lucas_probable_prime(n);
}

[[nodiscard]] consteval bool is_prime_by_trial_division(std::uintmax_t n)
{
for (std::uintmax_t f = 2; f * f <= n; f += 1 + (f % 2)) {
if (n % f == 0) {
return false;
}
}
return true;
}

// Return the first factor of n, as long as it is either k or n.
//
// Precondition: no integer smaller than k evenly divides n.
[[nodiscard]] constexpr std::optional<std::uintmax_t> first_factor_maybe(std::uintmax_t n, std::uintmax_t k)
{
if (n % k == 0) {
return k;
}
if (k * k > n) {
return n;
}
return std::nullopt;
}

template<std::size_t N>
[[nodiscard]] consteval std::array<std::uintmax_t, N> first_n_primes()
{
std::array<std::uintmax_t, N> primes{};
primes[0] = 2;
for (std::size_t i = 1; i < N; ++i) {
primes[i] = primes[i - 1] + 1;
while (!is_prime_by_trial_division(primes[i])) {
while (!baillie_psw_probable_prime(primes[i])) {
++primes[i];
}
}
return primes;
}

template<std::size_t N, typename Callable>
consteval void call_for_coprimes_up_to(std::uintmax_t n, const std::array<std::uintmax_t, N>& basis, Callable call)
{
for (std::uintmax_t i = 0u; i < n; ++i) {
if (std::apply([&i](auto... primes) { return ((i % primes != 0) && ...); }, basis)) {
call(i);
}
}
}

template<std::size_t N>
[[nodiscard]] consteval std::size_t num_coprimes_up_to(std::uintmax_t n, const std::array<std::uintmax_t, N>& basis)
{
std::size_t count = 0u;
call_for_coprimes_up_to(n, basis, [&count](auto) { ++count; });
return count;
}

template<std::size_t ResultSize, std::size_t N>
[[nodiscard]] consteval auto coprimes_up_to(std::size_t n, const std::array<std::uintmax_t, N>& basis)
{
std::array<std::uintmax_t, ResultSize> coprimes{};
std::size_t i = 0u;

call_for_coprimes_up_to(n, basis, [&coprimes, &i](std::uintmax_t cp) { coprimes[i++] = cp; });

return coprimes;
}

template<std::size_t N>
[[nodiscard]] consteval std::uintmax_t product(const std::array<std::uintmax_t, N>& values)
{
Expand All @@ -494,48 +441,34 @@ constexpr auto get_first_of(const Rng& rng, UnaryFunction f)
return get_first_of(begin(rng), end(rng), f);
}

// A configurable instantiation of the "wheel factorization" algorithm [1] for prime numbers.
//
// Instantiate with N to use a "basis" of the first N prime numbers. Higher values of N use fewer trial divisions, at
// the cost of additional space. The amount of space consumed is roughly the total number of numbers that are a) less
// than the _product_ of the basis elements (first N primes), and b) coprime with every element of the basis. This
// means it grows rapidly with N. Consider this approximate chart:
//
// N | Num coprimes | Trial divisions needed
// --+--------------+-----------------------
// 1 | 1 | 50.0 %
// 2 | 2 | 33.3 %
// 3 | 8 | 26.7 %
// 4 | 48 | 22.9 %
// 5 | 480 | 20.8 %
//
// Note the diminishing returns, and the rapidly escalating costs. Consider this behaviour when choosing the value of N
// most appropriate for your needs.
//
// [1] https://en.wikipedia.org/wiki/Wheel_factorization
template<std::size_t BasisSize>
struct wheel_factorizer {
static constexpr auto basis = first_n_primes<BasisSize>();
static constexpr auto wheel_size = product(basis);
static constexpr auto coprimes_in_first_wheel =
coprimes_up_to<num_coprimes_up_to(wheel_size, basis)>(wheel_size, basis);

[[nodiscard]] static consteval std::uintmax_t find_first_factor(std::uintmax_t n)
{
if (const auto k = detail::get_first_of(basis, [&](auto p) { return first_factor_maybe(n, p); })) return *k;
[[nodiscard]] consteval std::uintmax_t find_first_factor(std::uintmax_t n)
{
constexpr auto first_100_primes = first_n_primes<100>();

if (const auto k = detail::get_first_of(std::next(begin(coprimes_in_first_wheel)), end(coprimes_in_first_wheel),
[&](auto p) { return first_factor_maybe(n, p); }))
return *k;
for (const auto& p : first_100_primes) {
if (n % p == 0u) {
return p;
}
if (p * p > n) {
return n;
}
}

for (std::size_t wheel = wheel_size; wheel < n; wheel += wheel_size)
if (const auto k =
detail::get_first_of(coprimes_in_first_wheel, [&](auto p) { return first_factor_maybe(n, wheel + p); }))
return *k;
// If we got this far, and we haven't found a factor, and haven't terminated... maybe it's prime? Do a fast check.
if (baillie_psw_probable_prime(n)) {
return n;
}

[[nodiscard]] static consteval bool is_prime(std::size_t n) { return (n > 1) && find_first_factor(n) == n; }
};
// If we're here, we know `n` is composite, so continue with trial division for all odd numbers.
std::uintmax_t factor = first_100_primes.back() + 2u;
while (factor * factor <= n) {
if (n % factor == 0u) {
return factor;
}
factor += 2u;
}

return n; // Technically unreachable.
}

} // namespace mp_units::detail
24 changes: 4 additions & 20 deletions src/core/include/mp-units/framework/magnitude.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,13 +51,6 @@ import std;

namespace mp_units {

namespace detail {

// Higher numbers use fewer trial divisions, at the price of more storage space.
using factorizer = wheel_factorizer<4>;

} // namespace detail

#if defined MP_UNITS_COMP_CLANG || MP_UNITS_COMP_CLANG < 18

MP_UNITS_EXPORT template<symbol_text Symbol>
Expand Down Expand Up @@ -629,14 +622,10 @@ using common_magnitude_type = decltype(_common_magnitude_type_impl(M));
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// `mag()` implementation.

// Sometimes we need to give the compiler a "shortcut" when factorizing large numbers (specifically, numbers whose
// _first factor_ is very large). If we don't, we can run into limits on the number of constexpr steps or iterations.
//
// To provide the first factor for a given number, specialize this variable template.
//
// WARNING: The program behaviour will be undefined if you provide a wrong answer, so check your math!
MP_UNITS_EXPORT template<std::intmax_t N>
constexpr std::optional<std::intmax_t> known_first_factor = std::nullopt;
[[deprecated("`known_first_factor` is no longer necessary and can simply be removed")]]
constexpr std::optional<std::intmax_t>
known_first_factor = std::nullopt;

namespace detail {

Expand All @@ -646,12 +635,7 @@ template<std::intmax_t N>
struct prime_factorization {
[[nodiscard]] static consteval std::intmax_t get_or_compute_first_factor()
{
constexpr auto opt = known_first_factor<N>;
if constexpr (opt.has_value()) {
return opt.value(); // NOLINT(bugprone-unchecked-optional-access)
} else {
return static_cast<std::intmax_t>(factorizer::find_first_factor(N));
}
return static_cast<std::intmax_t>(find_first_factor(N));
}

static constexpr std::intmax_t first_base = get_or_compute_first_factor();
Expand Down
3 changes: 0 additions & 3 deletions src/systems/include/mp-units/systems/hep.h
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,6 @@
MP_UNITS_EXPORT
namespace mp_units {

template<>
constexpr std::optional<std::intmax_t> known_first_factor<334'524'384'739> = 334'524'384'739;

namespace hep {

// energy
Expand Down
17 changes: 0 additions & 17 deletions test/static/magnitude_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,6 @@ import mp_units;
using namespace units;
using namespace units::detail;

template<>
constexpr std::optional<std::intmax_t> units::known_first_factor<9223372036854775783> = 9223372036854775783;

namespace {

// A set of non-standard bases for testing purposes.
Expand Down Expand Up @@ -182,20 +179,6 @@ static_assert(std::is_same_v<decltype(get_base(power_v<mag_2, 5, 8>{})), mag_2_>
// mag_ratio<16'605'390'666'050, 10'000'000'000'000>();
// }

// SECTION("Can bypass computing primes by providing known_first_factor<N>")
// {
// // Sometimes, even wheel factorization isn't enough to handle the compilers' limits on constexpr steps and/or
// // iterations. To work around these cases, we can explicitly provide the correct answer directly to the
// compiler.
// //
// // In this case, we test that we can represent the largest prime that fits in a signed 64-bit int. The reason
// this
// // test can pass is that we have provided the answer, by specializing the `known_first_factor` variable template
// // above in this file.
// mag<9'223'372'036'854'775'783>();
// }
// }

// TEST_CASE("magnitude converts to numerical value")
// {
// SECTION("Positive integer powers of integer bases give integer values")
Expand Down
45 changes: 0 additions & 45 deletions test/static/prime_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -35,51 +35,6 @@ namespace {

inline constexpr auto MAX_U64 = std::numeric_limits<std::uint64_t>::max();

template<std::size_t BasisSize, std::size_t... Is>
constexpr bool check_primes(std::index_sequence<Is...>)
{
return ((Is < 2 || wheel_factorizer<BasisSize>::is_prime(Is) == is_prime_by_trial_division(Is)) && ...);
}

static_assert(check_primes<2>(std::make_index_sequence<122>{}));

// This is the smallest number that can catch the bug where we use only _prime_ numbers in the first wheel, rather than
// numbers which are _coprime to the basis_.
//
// The basis for N = 4 is {2, 3, 5, 7}, so the wheel size is 210. 11 * 11 = 121 is within the first wheel. It is
// coprime with every element of the basis, but it is _not_ prime. If we keep only prime numbers, then we will neglect
// using numbers of the form (210 * n + 121) as trial divisors, which is a problem if any are prime. For n = 1, we have
// a divisor of (210 + 121 = 331), which happens to be prime but will not be used. Thus, (331 * 331 = 109561) is a
// composite number which could wrongly appear prime if we skip over 331.
static_assert(wheel_factorizer<4>::is_prime(109'561) == is_prime_by_trial_division(109'561));

static_assert(wheel_factorizer<1>::coprimes_in_first_wheel.size() == 1);
static_assert(wheel_factorizer<2>::coprimes_in_first_wheel.size() == 2);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel.size() == 8);
static_assert(wheel_factorizer<4>::coprimes_in_first_wheel.size() == 48);
static_assert(wheel_factorizer<5>::coprimes_in_first_wheel.size() == 480);

static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[0] == 1);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[1] == 7);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[2] == 11);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[3] == 13);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[4] == 17);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[5] == 19);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[6] == 23);
static_assert(wheel_factorizer<3>::coprimes_in_first_wheel[7] == 29);

static_assert(!wheel_factorizer<1>::is_prime(0));
static_assert(!wheel_factorizer<1>::is_prime(1));
static_assert(wheel_factorizer<1>::is_prime(2));

static_assert(!wheel_factorizer<2>::is_prime(0));
static_assert(!wheel_factorizer<2>::is_prime(1));
static_assert(wheel_factorizer<2>::is_prime(2));

static_assert(!wheel_factorizer<3>::is_prime(0));
static_assert(!wheel_factorizer<3>::is_prime(1));
static_assert(wheel_factorizer<3>::is_prime(2));

// Modular arithmetic.
static_assert(add_mod(1u, 2u, 5u) == 3u);
static_assert(add_mod(4u, 4u, 5u) == 3u);
Expand Down

0 comments on commit de68b3a

Please sign in to comment.