-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame_array2trial.py
240 lines (218 loc) · 9.75 KB
/
game_array2trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
"""
Adapted from https://github.com/junxiaosong/AlphaZero_Gomoku
Modified by Chi-Hang Suen:
# game_array2trial: add winning_move for experiment with synthetic states
# game_array2: pre-compute state and store, and speed up winner checking
# game_array: speed up checking end game by using the fact that previous state must be non-terminal
# 7b: use array view instead of coordinates view for move - current state no need to flip upside down,
# and tidy up graphics for relevant changes; fix bug mixing up width & height
#start_self_play: align with paper to set temperature at 1 at early stage
"""
from __future__ import print_function
import numpy as np
class Board(object):
"""board for the game"""
def __init__(self, **kwargs):
self.width = int(kwargs.get('width', 8))
self.height = int(kwargs.get('height', 8))
# board states stored as a dict,
# key: move as location on the board,
# value: player as pieces type
self.states = {}
# need how many pieces in a row to win
self.n_in_row = int(kwargs.get('n_in_row', 5))
self.players = [1, 2] # player1 and player2
def init_board(self, start_player=0):
if self.width < self.n_in_row or self.height < self.n_in_row:
raise Exception('board width and height can not be less than {}'.format(self.n_in_row))
self.black_player = self.players[start_player] # start player
self.current_player = self.black_player
# keep available moves in a list
self.availables = list(range(self.width * self.height))
self.states = {}
self.last_move = -1
self.state_colour = np.zeros((2, self.height, self.width)) #first plane is black, white second
self.pre_computed = False
self.pre_computed_state = None
def move_to_location(self, move):
"""
3*3 board's moves like:
0 1 2
3 4 5
6 7 8
and move 6's location is (2, 0)
"""
h = move // self.width
w = move % self.width
return (h, w) # amend as (), better than []
def location_to_move(self, location):
if len(location) != 2:
return -1
h = location[0]
w = location[1]
move = h * self.width + w
if move not in range(self.width * self.height):
return -1
return move
def current_state(self):
"""return the board state from the perspective of the current player.
state shape: 4*width*height
"""
if not self.pre_computed:
self.pre_computed_state = np.zeros((4, self.height, self.width))
if self.states:
self.pre_computed_state[0] = self.state_colour[1 - int(self.current_player==self.black_player)]
self.pre_computed_state[1] = self.state_colour[int(self.current_player==self.black_player)]
# indicate the last move location
self.pre_computed_state[2][self.last_move//self.width, self.last_move%self.width] = 1.0
if len(self.states) % 2 == 0:
self.pre_computed_state[3][:, :] = 1.0 # indicate the colour to play
self.pre_computed = True
return self.pre_computed_state
def do_move(self, move):
self.states[move] = self.current_player
self.availables.remove(move)
h, w = self.move_to_location(move)
self.state_colour[1 - int(self.current_player==self.black_player)][h, w]= 1
self.pre_computed = False
self.current_player = 3 - self.current_player #change player
self.last_move = move
def connected_n(self, move_rc, state_colour, n, n_target=None):
#only check connection with one move in (r,c) format
if n_target is None:
n_target = n
r, c = move_rc
s = state_colour
f = np.fliplr(s) #flip for finding diagonal in opposite direction, i.e. upwards
c_f = self.width -1 - c #for use in flipped state f
for i in range(n):
if s[r-i:r+n-i, c].sum() == n_target: # vertical line
return True
if s[r, c-i:c+n-i].sum() == n_target: #horizontal line
return True
if s[r-i:r+n-i, c-i:c+n-i].diagonal().sum() == n_target: #diagonal line
return True
if f[r-i:r+n-i, c_f-i:c_f+n-i].diagonal().sum() == n_target: #diagonal line in opposite direction
return True
return False
def has_a_winner(self):
'''only check connection with last move because state before last move must be non-terminal'''
n = self.n_in_row
if self.width * self.height - len(self.availables) < n*2 -1:
return False, -1
r, c = self.move_to_location(self.last_move)
s = self.state_colour[int(self.current_player==self.black_player)] #get state_colour of last move
has_winner = self.connected_n((r, c), s, n)
winner = self.states[self.last_move] if has_winner else -1 #note: last move is opponent
return has_winner, winner
def winning_move(self, s=None, availables=None):
''' find immediate winning move before doing a move; s: state_colour
for experiment with synthetic states '''
win_moves=[]
if s is None:
s = self.state_colour[1 - int(self.current_player==self.black_player)] #get state_colour of current player
if availables is None:
availables = self.availables
for move in availables:
if self.connected_n(self.move_to_location(move), s, self.n_in_row):
win_moves.append[move]
return win_moves
def game_end(self):
"""Check whether the game is ended or not"""
win, winner = self.has_a_winner()
if win:
return True, winner
elif not len(self.availables):
return True, -1
return False, -1
def get_current_player(self):
return self.current_player
class Game(object):
"""game server"""
def __init__(self, board, **kwargs):
self.board = board
def graphic(self, board, player1, player2):
"""Draw the board and show game info"""
width = board.width
height = board.height
print("Player", player1, "with X".rjust(3))
print("Player", player2, "with O".rjust(3))
print()
for x in range(width):
print("{0:8}".format(x), end='')
print('\r\n')
for i in range(height):
print("{0:4d}".format(i), end='')
for j in range(width):
loc = i * width + j
p = board.states.get(loc, -1)
if p == player1:
print('X'.center(8), end='')
elif p == player2:
print('O'.center(8), end='')
else:
print('_'.center(8), end='')
print('\r\n\r\n')
def start_play(self, player1, player2, start_player=0, is_shown=1):
"""start a game between two players"""
if start_player not in (0, 1):
raise Exception('start_player should be either 0 (player1 first) '
'or 1 (player2 first)')
self.board.init_board(start_player)
p1, p2 = self.board.players
player1.set_player_ind(p1)
player2.set_player_ind(p2)
players = {p1: player1, p2: player2}
if is_shown:
self.graphic(self.board, player1.player, player2.player)
while True:
current_player = self.board.get_current_player()
player_in_turn = players[current_player]
move = player_in_turn.get_action(self.board)
self.board.do_move(move)
if is_shown:
self.graphic(self.board, player1.player, player2.player)
end, winner = self.board.game_end()
if end:
if is_shown:
if winner != -1:
print("Game end. Winner is", players[winner])
else:
print("Game end. Tie")
return winner
def start_self_play(self, player, is_shown=0, temp=1e-3):
""" start a self-play game using a MCTS player, reuse the search tree,
and store the self-play data: (state, mcts_probs, z) for training
"""
self.board.init_board()
p1, p2 = self.board.players
states, mcts_probs, current_players = [], [], []
act_temp = 1 #for early stage of game
while True:
if len(self.board.availables) < 0.9*self.board.width*self.board.height:
act_temp = temp #use temp if not early stage
move, move_probs = player.get_action(self.board, act_temp, return_prob=1)
# store the data
states.append(self.board.current_state())
mcts_probs.append(move_probs)
current_players.append(self.board.current_player)
# perform a move
self.board.do_move(move)
if is_shown:
self.graphic(self.board, p1, p2)
end, winner = self.board.game_end()
if end:
# winner from the perspective of the current player of each state
winners_z = np.zeros(len(current_players))
if winner != -1:
winners_z[np.array(current_players) == winner] = 1.0
winners_z[np.array(current_players) != winner] = -1.0
# reset MCTS root node
player.reset_player()
if is_shown:
if winner != -1:
print("Game end. Winner is player:", winner)
else:
print("Game end. Tie")
return winner, zip(states, mcts_probs, winners_z)