-
Notifications
You must be signed in to change notification settings - Fork 87
/
gchain_map.cpp
204 lines (191 loc) · 7.54 KB
/
gchain_map.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <zlib.h>
#include <math.h>
#include "kseq.h" // FASTA/Q parser
#include "kavl.h"
#include "khash.h"
#include "kalloc.h"
#include "kthread.h"
#include "inter.h"
#include "Overlaps.h"
#include "CommandLines.h"
#include "htab.h"
#include "Hash_Table.h"
#include "Correct.h"
#include "Process_Read.h"
#include "Assembly.h"
#include "gchain_map.h"
KSEQ_INIT(gzFile, gzread)
void ul_map_lchain(ha_abufl_t *ab, uint32_t rid, char* rs, uint64_t rl, uint64_t mz_w, uint64_t mz_k, const ul_idx_t *uref, overlap_region_alloc *overlap_list, Candidates_list *cl, double bw_thres,
int max_n_chain, int apend_be, kvec_t_u8_warp* k_flag, overlap_region* f_cigar, kvec_t_u64_warp* dbg_ct, st_mt_t *sp, uint32_t *high_occ, uint32_t *low_occ, uint32_t is_accurate, uint32_t gen_off, double mcopy_rate, uint32_t chain_cutoff, uint32_t mcopy_khit_cut);
typedef struct { // global data structure for kt_pipeline()
const void *ha_flt_tab;
const ha_pt_t *ha_idx;
const mg_idxopt_t *opt;
const ma_ug_t *ug;
const asg_t *rg;
const ug_opt_t *uopt;
const ul_idx_t *uu;
ucr_file_t *ucr_s;
kseq_t *ks;
int64_t chunk_size;
uint64_t n_thread;
uint64_t total_base;
uint64_t total_pair;
uint64_t num_bases, num_corrected_bases, num_recorrected_bases;
uint64_t remap, mini_cut;
} gmap_t;
typedef struct { // data structure for each step in kt_pipeline()
const mg_idxopt_t *opt;
const void *ha_flt_tab;
const ha_pt_t *ha_idx;
const ma_ug_t *ug;
const asg_t *rg;
const ug_opt_t *uopt;
const ul_idx_t *uu;
int n, m, sum_len;
uint64_t *len, id;
char **seq;
// ha_mzl_v *mzs;///useless
// st_mt_t *sps;///useless
// mg_gchains_t **gcs;///useless
mg_tbuf_t **buf;///useless
ha_ovec_buf_t **hab;
kv_ul_ov_t *res;
// glchain_t *ll;
// gdpchain_t *gdp;
// glchain_t *sec_ll;
uint64_t num_bases, num_corrected_bases, num_recorrected_bases, mini_cut;
int64_t n_thread;
} sstep_t;
/**
static void worker_ul_map(void *data, long i, int tid) // callback for kt_for()
{
sstep_t *s = (sstep_t*)data;
ha_ovec_buf_t *b = s->hab[tid];
kv_ul_ov_t *res = (s->res?(&(s->res[tid])):(NULL));
mg_tbuf_t *buf = (s->buf?s->buf[tid]:NULL);
int64_t winLen = MIN((((double)THRESHOLD_MAX_SIZE)/s->opt->diff_ec_ul), WINDOW);
int fully_cov, abnormal;
assert(UL_INF.a[s->id+i].rlen == s->len[i]);
// if(s->id+i!=43) return;
ul_map_lchain(b->abl, i, s->seq[i], s->len[i], s->opt->w, s->opt->k, s->uu, &b->olist, &b->olist_hp, &b->clist, s->opt->bw_thres,
s->opt->max_n_chain, 1, NULL, &(b->tmp_region), NULL, &(b->sp), s->mini_cut, 0);
clear_Cigar_record(&b->cigar1);
clear_Round2_alignment(&b->round2);
b->self_read.seq = s->seq[i]; b->self_read.length = s->len[i]; b->self_read.size = 0;
lchain_align(&b->olist, s->uu, &b->self_read, &b->correct, &b->ovlp_read, &b->POA_Graph, &b->DAGCon,
&b->cigar1, &b->hap, &b->round2, &b->r_buf, &(b->tmp_region.w_list), 0, 1, &fully_cov, &abnormal, s->opt->diff_ec_ul, winLen, NULL);
// gl_chain_refine(&b->olist, &b->correct, &b->hap, bl, s->uu, s->opt->diff_ec_ul, winLen, s->len[i], km);
gl_chain_refine_advance_combine(s->buf[tid], &(UL_INF.a[s->id+i]), &b->olist, &b->correct, &b->hap, &(s->sps[tid]), bl, &(s->gdp[tid]), s->uu, s->opt->diff_ec_ul, winLen, s->len[i], s->uopt, s->id+i, tid, NULL);
memset(&b->self_read, 0, sizeof(b->self_read));
if(UL_INF.a[s->id+i].dd) {
free(s->seq[i]); s->seq[i] = NULL; b->num_correct_base++;
}
s->hab[tid]->num_read_base++;
}
static void *worker_gmap_work_ovec_pip(void *data, int step, void *in) // callback for kt_pipeline()
{
gmap_t *p = (gmap_t*)data;
if (step == 0) { // step 1: read a block of sequences
int32_t ret; uint64_t l; sstep_t *s; CALLOC(s, 1);
s->ha_flt_tab = p->ha_flt_tab; s->ha_idx = p->ha_idx; s->id = p->total_pair;
s->opt = p->opt; s->uu = p->uu; s->uopt = p->uopt; s->rg = p->rg; s->mini_cut = p->mini_cut;///need set
while ((ret = kseq_read(p->ks)) >= 0) {
if (p->ks->seq.l < (uint64_t)p->opt->k) continue;
if (s->n == s->m) {
s->m = s->m < 16? 16 : s->m + (s->n>>1);
REALLOC(s->len, s->m);
REALLOC(s->seq, s->m);
}
if(!(p->remap)) {
append_ul_t(&UL_INF, NULL, p->ks->name.s, p->ks->name.l, NULL, 0, NULL, 0, P_CHAIN_COV, s->uopt, 0);
}
l = p->ks->seq.l;
MALLOC(s->seq[s->n], l);
s->sum_len += l;
memcpy(s->seq[s->n], p->ks->seq.s, l);
s->len[s->n++] = l;
if (s->sum_len >= p->chunk_size) break;
}
p->total_pair += s->n;
if (s->sum_len == 0) free(s);
else return s;
}
else if (step == 1) { // step 2: alignment
sstep_t *s = (sstep_t*)in; uint64_t i;
CALLOC(s->hab, p->n_thread);
CALLOC(s->buf, p->n_thread);
if(!(p->remap)) CALLOC(s->res, p->n_thread);//for results
for (i = 0; i < p->n_thread; ++i) {
s->hab[i] = ha_ovec_init(0, 0, 1); s->buf[i] = mg_tbuf_init();
}
// kt_for(p->n_thread, worker_for_ul_scall_alignment, s, s->n);
for (i = 0; i < p->n_thread; ++i) {
s->num_bases += s->hab[i]->num_read_base;
s->num_corrected_bases += s->hab[i]->num_correct_base;
s->num_recorrected_bases += s->hab[i]->num_recorrect_base;
ha_ovec_destroy(s->hab[i]); mg_tbuf_destroy(s->buf[i]);
}
free(s->hab); free(s->buf);
return s;
}
else if (step == 2) { // step 3: dump
sstep_t *s = (sstep_t*)in;
uint64_t i, rid, sn = s->n;
p->num_bases += s->num_bases;
p->num_corrected_bases += s->num_corrected_bases;
p->num_recorrected_bases += s->num_recorrected_bases;
if(!(p->remap)) {
for (i = 0; i < p->n_thread; ++i) {
push_uc_block_t(s->uopt, &(s->res[i]), s->seq, s->len, s->id);
kv_destroy(s->res[i]);
}
free(s->res);
for (i = 0; i < sn; ++i) {
rid = s->id + i;
if((UL_INF.n <= rid) || (UL_INF.n > rid && UL_INF.a[rid].rlen != s->len[i])) {///reads without alignment
append_ul_t(&UL_INF, &rid, NULL, 0, s->seq[i], s->len[i], NULL, 0, P_CHAIN_COV, s->uopt, 0);
}
free(s->seq[i]);
}
} else {
for (i = 0; i < sn; ++i) {
rid = s->id + i;
if(UL_INF.a[rid].dd == 0 && p->ucr_s && p->ucr_s->flag == 1) {
assert(s->seq[i]);
///for debug interval
write_compress_base_disk(p->ucr_s->fp, rid, s->seq[i], s->len[i], &(p->ucr_s->u));
}
free(s->seq[i]);
}
}
free(s->len); free(s->seq); free(s);
}
return 0;
}
**/
// int gmap_work_ovec(gmap_t* sl, const enzyme *fn)
// {
// double index_time = yak_realtime();
// int i;
// init_all_ul_t(&UL_INF, &R_INF);
// for (i = 0; i < fn->n; i++){
// gzFile fp;
// if ((fp = gzopen(fn->a[i], "r")) == 0) return 0;
// sl->ks = kseq_init(fp);
// kt_pipeline(3, worker_gmap_work_ovec_pip, sl, 3);
// kseq_destroy(sl->ks);
// gzclose(fp);
// }
// sl->hits.total_base = sl->total_base;
// sl->hits.total_pair = sl->total_pair;
// fprintf(stderr, "[M::%s::%.3f] ==> Qualification\n", __func__, yak_realtime()-index_time);
// fprintf(stderr, "[M::%s::] ==> # reads: %lu, # bases: %lu\n", __func__, UL_INF.n, sl->total_base);
// fprintf(stderr, "[M::%s::] ==> # bases: %lu; # corrected bases: %lu; # recorrected bases: %lu\n",
// __func__, sl->num_bases, sl->num_corrected_bases, sl->num_recorrected_bases);
// gen_ul_vec_rid_t(&UL_INF, &R_INF, NULL);
// return 1;
// }